Skip to main content
Log in

The Potential of Quantum Computing for Geoscience

  • Review Paper
  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Characterization and modeling of geomedia, computing their effective flow, transport, elastic, and other properties, and simulating various phenomena that occur there constitute some of the most intensive calculations in science and engineering. Over the past twenty five years, however, development of quantum computers has made great progress, and powerful quantum algorithms have been developed for simulating many important and computationally difficult problems, with the potential for enormous speed-up over the most efficient classical algorithms. This perspective describes such algorithms and discusses their potential applications to problems in geoscience, ranging from reconstruction and modeling of geomedia, to simulating fluid flow by the Stokes and Navier-Stokes equations, or lattice Boltzmann and lattice gas methods, numerical solution of the advection-diffusion equation, pattern recognition in and analysis of big data, machine learning methods, and image processing. Although several hurdles remain that must be overcome before practical computations with quantum computers, and in particular those associated with geoscience, become possible, such as designing fault-tolerant quantum computers, which is still far into the future, noisy intermediate-scale computers are already available whose capabilities have been demonstrated for various problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. When a group of particles, or more generally, elements interact, or share spatial proximity such that the quantum state of each of them cannot be described independently of those of the others, including when they are separated by large distances, one has quantum entanglement.

  2. The Hilbert space generalizes the methods of linear algebra and calculus from finite-dimensional Euclidean vector space to those that may be infinite-dimensional ones. It is a vector space with an inner product that defines a distance function for which it is a complete metric space.

  3. Recall that in quantum mechanics, particles, such as electrons, are described by a wave function. As long as there exists a definite phase relation between different states, the system is said to be coherent. Such a phase relationship is necessary to carry out quantum computing on quantum information encoded in quantum states, with coherence preserved under the laws of quantum physics.

References

  • Adachi, S.H., Henderson, M.P.: Application of quantum annealing to training of deep neural networks; https://arxiv.org/abs/arXiv:1510.06356 (2015)

  • Almuer, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90, 261 (2013)

    Article  Google Scholar 

  • Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G.S.L., Buell, D.A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R., Courtney, W., Dunsworth, A., Farhi, E., Foxen, B., Fowler, A., Gidney, C., Giustina, M., Graff, R., Guerin, K., Habegger, S., Harrigan, M.P., Hartmann, M.J., Ho, A., Hoffmann, M., Huang, T., Humble, T.S., Isakov, S.V., Jeffrey, E., Jiang, Z., Kafri, D., Kechedzhi, K., Kelly, J., Klimov, P.V., Knysh, S., Korotkov, A., Kostritsa, F., Landhuis, D., Lindmark, M., Lucero, E., Lyakh, D., Mandrś, S., McClean, J.R., McEwen, M., Megrant, A., Mi, X., Michielsen, K., Mohseni, M., Mutus, J., Naaman, O., Neeley, M., Neill, C., Niu, M.Y., Ostby, E., Petukhov, A., Platt, J.C., Quintana, C., Rieffel, E.G., Roushan, P., Rubin, N.C., Sank, D., Satzinger, K.J., Smelyanskiy, V., Sung, K.J., Trevithick, M.D., Vainsencher, A., Villalonga, B., White, T., Yao, Z.J., Yeh, P., Zalcman, A., Neven, H., Martinis, J.M.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505 (2019)

    Google Scholar 

  • Bateman, H.: Some recent researches on the motion of fluids. Mon. Weather Rev. 43, 163 (1915)

    Article  Google Scholar 

  • Benioff, P.: The computer as a physical system: a microscopic quantum mechanical hamiltonian model of computers as represented by turing machines. J. Stat. Phys. 22, 563 (1980)

    Article  Google Scholar 

  • Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. arXiv:1611.09347v2 [quant-ph] (10 May 2018)

  • Blunt, M.J.: Multiphase flow in permeable media: a pore-scale perspective. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  • Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. http://arXiv.org/quant-ph/0005055 (2000)

  • Bretscher, H.M., Andrich, P., Telang, P., Singh, A., Harnagea, L., Sood, A.K., Rao, A.: Ultrafast melting and recovery of collective order in the excitonic insulator Ta2NiSe5. Nat. Commun. 12, 1699 (2021)

    Article  Google Scholar 

  • Brooke, J., Bitko, D., Rosenbaum, T.F., Aeppli, G.: Quantum annealing of a disordered magnet. Science 284, 779 (1999)

    Article  Google Scholar 

  • Budinski, L.: Quantum algorithm for the advection-diffusion equation simulated with the lattice Boltzmann method. Quantum Inf. Process. 20, 57 (2021)

    Article  Google Scholar 

  • Burgers, J.M.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171 (1948)

    Article  Google Scholar 

  • Capek, P.: On the importance of simulated annealing algorithms for stochastic reconstruction constrained by low-order microstructural descriptors. Transp. Porous Media 125, 59 (2018)

    Article  Google Scholar 

  • Caraiman, S., Manta, V.: Quantum image filtering in the frequency domain. Adv. Elect. Comput. Eng. 13, 77 (2013)

    Article  Google Scholar 

  • Caraiman, S., Manta, V.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529, 46 (2014)

    Article  Google Scholar 

  • Chai, Z., Zhao, T.S.: Lattice Boltzmann model for the convection-diffusion equation. Phys. Rev. E 87, 063309 (2013)

    Article  Google Scholar 

  • Chiesa, A., Tacchino, F., Grossi, M., Santini, P., Tavernelli, I., Gerace, D., Carretta, S.: Quantum hardware simulating four-dimensional inelastic neutron scattering. Nat. Phys. 15, 455 (2019)

    Article  Google Scholar 

  • Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009)

    Article  Google Scholar 

  • Childs, A.M., Liu, J.-P., Ostrander, A.: High-precision quantum algorithms for partial differential equations. Quantum 5, 574 (2021)

    Article  Google Scholar 

  • Chowdhury, A.N., Somma, R.D.: Quantum algorithms for Gibbs sampling and hitting-time estimation. Quant. Inf. Comp. 17, 0041 (2017)

    Google Scholar 

  • Cohen, E., Dolev, S., Rosenblit, M.: All-optical design for inherently energy-conserving reversible gates and circuits. Nat. Commun. 7, 11424 (2016)

    Article  Google Scholar 

  • Das, A., Chakrabarti, B.K.: Quantum annealing and analog quantum computation. Rev. Mod. Phys. 80, 1061 (2008)

    Article  Google Scholar 

  • De Longueville, B., Annoni, A., Schade, S., et al.: Digital earth’s nervous system for crisis events: real-time sensor web enablement of volunteered geographic information. Int. J. Digit. Earth 3, 242 (2010)

    Article  Google Scholar 

  • Douglas, L.: The importance of big data: a definition. Gartner (2012). https://www.gartner.com/doc/2057415

  • Finnila, A.B., Gomez, M.A., Sebenik, C., Stenson, C., Doll, J.D.: Quantum annealing: a new method for minimizing multidimensional functions. Chem. Phys. Lett. 219, 343 (1994)

    Article  Google Scholar 

  • Feynmann, R.P.: Quantum mechanical computers, Opt. News 11(2), 11 (1985).

    Article  Google Scholar 

  • Francis, A., Freericks, J.K., Kemper, A.F.: Quantum computation of magnon spectra. Phys. Rev. B 101, 014411 (2020)

    Article  Google Scholar 

  • Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett. 56, 1505 (1986)

    Article  Google Scholar 

  • Gaitan, F.: Finding flows of a Navier-Stokes fluid through quantum computing. npj Quantum Inf. 6, 61 (2020)

    Article  Google Scholar 

  • Gaitan, F.: Finding solutions of the Navier-Stokes equations through quantum computing - recent progress, a generalization, and next steps forward. Adv. Quantum Technol. paper 2100055 (2021)

  • Grover, L.K.: A fast quantum mechanical algorithm for database search. Proceedings of the 28th annual ACM symposium on Theory of Computing (1996), p. 212 https://doi.org/10.1145/237814.237866

  • Guttag, J.V.: Introduction to computation and programming using Python: with application to understanding data. MIT Press, Cambridge (2016)

    Google Scholar 

  • Hardy, J., de Pazzis, O., Pomeau, Y.: Molecular dynamics of a classical lattice gas: transport properties and time correlation functions. Phys. Rev. A 13, 1949 (1976)

    Article  Google Scholar 

  • Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009)

    Article  Google Scholar 

  • Heim, B., Rønnow, T.F., Isakov, S.V., Troyer, M.: Quantum versus classical annealing of Ising spin glasses. Science 348, 215 (2015)

    Article  Google Scholar 

  • Heinrich, S.: The quantum query complexity of elliptic PDE. J. Complex. 22, 220 (2006)

    Article  Google Scholar 

  • Kacewicz, B.: Almost optimal solution of initial-value problems by randomized and quantum algorithms. J. Complex. 22, 676 (2006)

    Article  Google Scholar 

  • Kamrava, S., Tahmasebi, P., Sahimi, M.: Enhancing images of shale formations by a hybrid stochastic and deep learning algorithm. Neural Netw. 118, 310 (2019)

    Article  Google Scholar 

  • Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242 (2017)

    Article  Google Scholar 

  • Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671 (1983)

    Article  Google Scholar 

  • Kitaev, A.Y.: Quantum computations: algorithms and error correction. Russ. Math. Surv. 52, 1191 (1997)

    Article  Google Scholar 

  • Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355 (1998)

    Article  Google Scholar 

  • Lamm, H., Lawrence, S.: Simulation of nonequilibrium dynamics on a quantum computer. Phys. Rev. Lett. 121, 170501 (2018)

    Article  Google Scholar 

  • Latorre, J.I.: Image compression and entanglement (2005). arXiv:quant-ph/0510031

  • Liu, J., Mohan, A., Kalia, R.K., Nakano, A., Nomura, K.-I., Vashishta, P., Yao, K.-T.: Boltzmann machine modeling of layered MoS\(_2\) synthesis on a quantum annealer. Comput. Mater. Sci. 173, 109429 (2020)

    Article  Google Scholar 

  • Long, J.C.S., Karasaki, K., Davey, A., Peterson, I., Landsfeld, M., Kemeny, J., Martel, S.: Inverse approach to the construction of fracture hydrology models conditioned by geophysical data: an example from the validation exercises at the stripa mine. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 28, 121 (1991)

    Article  Google Scholar 

  • Matthews, D.: Supercharge your data wrangling with a graphics card. Nature 562, 151 (2018)

    Article  Google Scholar 

  • Mayer-Schonberger, V., Cukier, K.: Big Data: A Revolution that will Transform How We Live, Work and Think. Houghton Mifflin Harcourt Publishing Company, New York, (2013)

  • Mezzacapo, A., Sanz, M., Lamata, L., Egusquiza, I.L., Succi, S., Solano, E.: Quantum simulator for transport phenomena in fluid flows. Sci. Rep. 5, 13153 (2015)

    Article  Google Scholar 

  • Mosser, L., Dubrule, O., Blunt, M.J.: Stochastic seismic waveform inversion using generative adversarial networks as a geological prior. Math. Geosci. 52, 53 (2020)

    Article  Google Scholar 

  • Nielsen, M., Chuang, I.: Quantum Comput. Quantum Inf. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  • Normand, J.-M., Herrmann, H.J.: Precise determination of the conductivity exponent of 3d percolation using “percola’’. Int. J. Mod. Phys. C 6, 813 (1995)

    Article  Google Scholar 

  • O’Malley, D.: An approach to quantum-computational hydrologic inverse analysis. Sci. Rep. 8, 6919 (2018)

    Article  Google Scholar 

  • O’Malley, P.J.J., Babbush, R., Kivlichan, I.D., Romero, J., McClean, J.R., Barends, R., Kelly, J., Roushan, P., Tranter, A., Ding, N., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Fowler, A.G., Jeffrey, E., Megrant, A., Mutus, J.Y., Neill, C., Quintana, C., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Coveney, P.V., Love, P.J., Neven, H., Aspuru-Guzik, A., Martinis, J.M.: Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016)

    Google Scholar 

  • Oz, F., Vuppala, R.K.S.S., Kara, K., Gaitan, F.: Solving Burgers’ equation with quantum computing. Quantum Inf. Process. 21, 30 (2022)

    Article  Google Scholar 

  • Ray, N., Banerjee, T., Nadiga, B., Karra, S.: Towards solving the Navier-Stokes equation on quantum computers. https://arXiv.org/abs/1904.09033 (2019)

  • Ray, P., Chakrabarti, B.K., Chakrabarti, K.: Sherrington-Kirkpatrick model in a transverse field: absence of replica symmetry breaking due to quantum fluctuations. Phys. Rev. B 39, 11828 (1989)

    Article  Google Scholar 

  • Richter, J., Pal, A.: Simulating hydrodynamics on noisy intermediate-scale quantum devices with random circuits. Phys. Rev. Lett. 126, 230501 (2021)

    Article  Google Scholar 

  • Ruan, Y., Chen, H., Tan, J.: Quantum computation for large-scale image classification. Quantum Inform. Process. 15, 4049 (2016)

    Article  Google Scholar 

  • Sahimi, M.: Flow through porous media and fractured rock, 2nd edn. Wiley, Weinheim (2011)

    Book  Google Scholar 

  • Sahimi, M., Tahmasebi, P.: Reconstruction of heterogeneous materials and media: basic principles, computational algorithms, and applications. Phys. Rep. 939, 1 (2021)

    Article  Google Scholar 

  • Shakeel, A.: Efficient and scalable quantum walk algorithms via the quantum Fourier transform. Quantum Inf. Process. 19, (2020); https://dl.acm.org/doi/abs/10.1007/s11128-020-02834-y

  • Sasaki, M., Carlini, A.: Quantum learning and universal quantum matching machine. Phys. Rev. A 66, 022303 (2002)

    Article  Google Scholar 

  • Schuld, M., Sinayskiy, I., Petruccione, F. An introduction to quantum machine learning. arXiv:1409.3097v1 [quant-ph] (2014)

  • Shi, B., Guo, Z.: Lattice Boltzmann model for nonlinear convection-diffusion equations. Phys. Rev. E 79, 016701 (2009)

    Article  Google Scholar 

  • Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484 (1997)

    Article  Google Scholar 

  • Smith, A., Kim, M.S., Pollmann, F., Knolle, J.: Simulating quantum many-body dynamics on a current digital quantum computer. npj Quantum Inf. 5, 106 (2019)

    Article  Google Scholar 

  • Steijl, R.: Quantum algorithms for fluid simulations. IntechOpen (2019). https://doi.org/10.5772/Intechopen.86685

  • Steijl, R., Barakos, G.N.: Parallel evaluation of quantum algorithms for computational fluid dynamics. Comput. Fluids 173, 22 (2018)

    Article  Google Scholar 

  • Tahmasebi, P., Kamrava, S., Bai, T., Sahimi, M.: Machine learning in geo- and environmental sciences: from small to large scale. Adv. Water Resour. 142, 103619 (2020)

    Article  Google Scholar 

  • Tahmasebi, P., Sahimi, M.: Cross-correlation function for accurate reconstruction of heterogeneous media. Phys. Rev. Lett. 110, 078002 (2013)

    Article  Google Scholar 

  • Tahmasebi, P., Sahimi, M.: Enhancing multiple-point geostatistical modeling. I: Graph theory and pattern adjustment. Water Resour. Res. 52, 2015WR017806 (2016a)

    Article  Google Scholar 

  • Tahmasebi, P., Sahimi, M.: Enhancing multiple-point geostatistical modeling. II: Iterative simulation and multiple distance functions. Water Resour. Res. 52, 2015WR017807 (2016b)

    Article  Google Scholar 

  • Taiji, M., Ito, N., Suzuki, M.: Special purpose computer system for Ising models. Rev. Sci. Instrum. 59, 2483 (1988)

    Article  Google Scholar 

  • Talapov, A.L., Andreichenko, V.B., Dotsenko, V.S., Shchur, L.N.: Special-purpose computers for the random Ising model. In: Landau, D.P., Mon, K.K., Schüttler, H.B. (eds), Computer Simulation Studies in Condensed-Matter Physics IV, Springer Proceedings in Physics, 72 (Springer, Berlin, 1993), p. 79

  • Temme, K., Osborne, T.J., Vollbrecht, K.G., Poulin, D., Verstraete, F.: Quantum metropolis sampling. Nature 471, 87 (2011)

    Article  Google Scholar 

  • Vaez Allaei, S.M., Sahimi, M.: Computing transport properties of heterogeneous media by an optimization method. Int. J. Mod. Phys. C 16, 1 (2005)

    Article  Google Scholar 

  • Venegas-Andraca, S.E., Ball, J.: Processing images in entangled quantum systems. Quantum Inf. Process. 9, 1 (2010)

    Article  Google Scholar 

  • Venegas-Andraca, S.E., Bose, S.: Quantum computation and image processing: New trends in artificial intelligence. Proceedings of the 2003 IJCAI International Conference on Artificial Intelligence (2003), p. 1563

  • Vlasov, A.Y.: Quantum computations and images recognition. arXiv:quant-ph/9703010 (1997)

  • Wiebe, N., Kapoor, A., Svore, K.M.: Quantum deep learning. https://arxiv.org/abs/1412.3489 (2014)

  • Wossnig, L., Zhao, Z., Prakash, A.: Quantum linear system algorithm for dense matrices. Phys. Rev. Lett. 120, 050502 (2018)

    Article  Google Scholar 

  • Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15, 1 (2016)

    Article  Google Scholar 

  • Yan, F., Iliyasu, A., Le, P., Sun, B., Dong, F., Hirota, K.: A parallel comparison of multiple pairs of images on quantum computers. Int. J. Innov. Comput. Appl. 5, 199 (2013)

    Article  Google Scholar 

  • Yan, F., Iliyasu, A., Yang, H., Hirota, K.: Strategy for quantum image stabilization. Sci. China Inform. Sci. 59, 052102 (2016)

    Article  Google Scholar 

  • Yeong, C.L.Y., Torquato, S.: Reconstructing random media. Phys. Rev. E 57, 495 (1998)

    Article  Google Scholar 

  • Yepez, J.: Lattice-gas quantum computation. Int. J. Mod. Phys. C 9, 1587 (1998)

    Article  Google Scholar 

  • Yepez, J.: Quantum lattice-gas model for computational fluid dynamics. Phys. Rev. E 63, 046702 (2001)

    Article  Google Scholar 

  • Yung, M.-H., Aspuru-Guzik, A.: A quantum-quantum metropolis algorithm. Proc. Natl. Acad. Sci. USA 109, 754 (2012)

    Article  Google Scholar 

  • Zhang, Y., Lu, K., Xu, K., Gao, Y., Wilson, R.: Local feature point extraction for quantum images. Quantum Inf. Process. 14, 1573 (2015)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sahimi.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interests with anyone or any organization.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahimi, M., Tahmasebi, P. The Potential of Quantum Computing for Geoscience. Transp Porous Med 145, 367–387 (2022). https://doi.org/10.1007/s11242-022-01855-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-022-01855-8

Keywords

Navigation