Skip to main content
Log in

Determination of the Effective Permeability of Doubly Porous Materials by a Two-Scale Homogenization Approach

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The present work is dedicated to determining the effective permeability of doubly porous materials made of a solid phase comprising a network of interconnected pores at the nanoscale and a network of non-interconnected pores at the microscopic scale. The fluid flow at microscopic scale through the solid phase containing nanopores is described by the Darcy law, while fluid flow in the nano- and microscopic pores is governed by the Stokes equations. A two-scale homogenization approach is proposed to estimate the effective permeability of doubly porous materials in question. In the nanoscopic-to-microscopic upscaling, a micromechanical model based on the generalized self-consistent scheme (GSCS) is elaborated to estimate the microscopic permeability. In the microscopic-to-macroscopic upscaling, the equivalent inclusion method combined with the dilute, Mori–Tanaka, differential schemes is used to obtain different estimates of the macroscopic permeability. In the two-scale homogenization approach elaborated, the pore size and shape effects as well as the solid/fluid interface influence are taken into account. The results given by the proposed two-scale homogenization approach are discussed and compared with the relevant numerical results provided by the finite element method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Alcocer, F.J., Kumar, V., Singh, P.: Permeability of periodic porous media. Phys. Rev. E 59, 711–714 (1999)

    Article  Google Scholar 

  • Alcocer, F.J., Singh, P.: Permeability of periodic arrays of cylinders for viscoelastic flows. Phys. Fluids 14, 2578–2581 (2002)

    Article  Google Scholar 

  • Auriault, J., Boutin, C.: Deformable porous media with double porosity. Quasi-statics. I: coupling effects. Transp. Porous Media 7, 63–82 (1992)

    Article  Google Scholar 

  • Auriault, J., Boutin, C.: Deformable porous media with double porosity. Quasi- statics. II: memory effects. Transp. Porous Media 10, 153–169 (1993)

    Article  Google Scholar 

  • Auriault, J., Boutin, C.: Deformable porous media with double porosity. Quasi- statics. II: acoustic. Transp. Porous Media 14, 143–162 (1994)

    Article  Google Scholar 

  • Auriault, J., Sanchez-Palencia, E.: Etude du comportement macroscpoique d’un milieu poreux saturé déformable. J. Mec. 16, 575–603 (1977)

    Google Scholar 

  • Barbetta, A., Cameron, N.R.: Morphology and surface area of emulsion-derived (polyhipe) solid foams prepared with oil-phase soluble porogenic solvents: span 80 as surfactant. Macromolecules 37, 3188–3201 (2004)

    Article  Google Scholar 

  • Barbetta, A., Cameron, N.R.: Morphology and surface area of emulsion-derived (polyhipe) solid foams prepared with oil-phase soluble porogenic solvents: three-component surfactant system. Macromolecules 37, 3202–3213 (2004)

    Article  Google Scholar 

  • Barrenblatt, G., Zheltov, I., Kochina, I.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. Prikl. y Mech. 24, 852–864 (1960)

    Google Scholar 

  • Barrere, J., Caltagirone, J.P., Gipouloux, O.: Détermination numérique de la perméabilité en mileu poreux périodique tridimensionnel. C. R. Acad. Sci. 310, 347–352 (1990)

    Google Scholar 

  • Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  • Boutin, C.: Study of permeability by periodic and self-consistent homogenization. Eur. J. Mech. A. Solids 19, 603–632 (2000)

    Article  Google Scholar 

  • Boutin, C., Royer, P., Auriault, J.: Acoustic absorption of porous surfacing with dual porosity. Int. J. Solids Struct. 35, 4709–4737 (1998)

    Article  Google Scholar 

  • Chen, T., Dvorak, G., Yu, C.: Solids containing spherical nano-inclusions with interface stresses: effective properties and thermal-mechanical connections. Int. J. Solids Struct. 44, 941–955 (2007)

    Article  Google Scholar 

  • Christensen, R.M., Lo, K.H.: Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27, 315–330 (1979)

    Article  Google Scholar 

  • Cioranescu, D., Donato, P., Ene, H.I.: Homogenization of the stokes problem with non-homogeneous slip boundary conditions. Math. Methods Appl. Sci. 19, 857–881 (1996)

    Article  Google Scholar 

  • Cowin, S.: Bone Mechanics Handbook. CRC Press, Boca Raton, Florida (2001)

    Book  Google Scholar 

  • der Poel, C.V.: On the rheology of concentrated suspension. Rheol. Acta 1, 198–205 (1958)

    Article  Google Scholar 

  • Dingreville, R., Qu, J., Cherkaoui, M.: Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53, 1827–1854 (2005)

    Article  Google Scholar 

  • Duan, H., Karihaloo, B.: Thermo-elastic properties of heterogeneous materials with imperfect interfaces: generalized Levin’s formula and Hill’s connections. J. Mech. Phys. Solids 55, 1036–1052 (2007)

    Article  Google Scholar 

  • Duan, H., Wang, J., Huang, Z., Karihaloo, B.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53, 1574–1596 (2005)

    Article  Google Scholar 

  • Duan, H.L., Karihaloo, B.L., Wang, J., Yi, X.: Effective conductivities of heterogeneous media containing multiple inclusions with various spatial distributions. Phys. Rev. B 73, 174203 (2006)

    Article  Google Scholar 

  • Haller, X., Monerie, Y., Pagano, S., Vincent, P.G.: Elastic behavior of porous media with spherical nanovoids. Int. J. Solids Struct. 84, 99–109 (2016)

    Article  Google Scholar 

  • Jasiuk, I., Tsuchida, E., Mura, T.: The sliding inclusion under shear. Int. J. Solids Struct. 23, 1373–1385 (1987)

    Article  Google Scholar 

  • Le-Quang, H., He, Q.C.: A one-parameter generalized self-consistent model for isotropic multiphase composites. Int. J. Solids Struct. 44, 6805–6825 (2007)

    Article  Google Scholar 

  • Le-Quang, H., He, Q.C., Bonnet, G.: Eshelby’s tensor fields and effective conductivity of composites made of anisotropic phases with Kapitza’s interface thermal resistance. Phil. Mag. 91, 3358–3392 (2011)

    Article  Google Scholar 

  • Ly, H.B., Droumaguet, B.L., Monchiet, V., Grande, D.: Designing and modeling doubly porous polymeric materials. Eur. Phys. J. Spec. Top. 224, 1689–1706 (2015)

    Article  Google Scholar 

  • Ly, H.B., Monchiet, V., Grande, D.: Computation of permeability with fast fourier transform from 3-d digital images of porous microstructures. Int. J. Numer. Methods Heat Fluid Flow 26, 1328–1345 (2016)

    Article  Google Scholar 

  • Markov, M., Kazatchenko, E., Mousatov, A., Pervago, E.: Permeability of the fluid-filled inclusions in porous media. Transp. Porous Media 84, 307–317 (2010)

    Article  Google Scholar 

  • Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  • Monchiet, V., Bonnet, G., Lauriat, G.: A fft-based method to compute the permeability induced by a stokes slip flow through a porous medium. Comptes Rendus Mécanique 337, 192–197 (2009)

    Article  Google Scholar 

  • Neuber, H.: Ein neuer ansatz zur lösung räumlicher probleme der elastizitätstheorie. der hohlkegel unter einzellast als beispiel. ZAMM - J. Appl. Math. Mech. Z. Angew. Math. Mech. 14, 203–212 (1934)

    Article  Google Scholar 

  • Nguyen, T.K., Monchiet, V., Bonnet, G.: A fourier based numerical method for computing the dynamic permeability of periodic porous media. Eur. J. Mech. B Fluids 37, 90–98 (2013)

    Article  Google Scholar 

  • Olny, X., Boutin, C.: Acoustic wave propagation in double porosity media. J. Acoust. Soc. Am. 114, 73–89 (2003)

    Article  Google Scholar 

  • Papkovich, P.: The representation of general integral of the fundamental equations of elasticity theory in terms of harmonic functions. Izr. Akad. Nauk. SSSR Ser. Mat. 10, 1425–1435 (1932)

    Google Scholar 

  • Pouya, A.: Three-dimensional flow in fractured porous media: a potential solution based on singular integral equations. Adv. Water Resour. 35, 30–40 (2012)

    Article  Google Scholar 

  • Pouya, A., Vu, M.N.: Fluid flow and effective permeability of an infinite matrix containing disc-shaped cracks. Adv. Water Resour. 42, 37–46 (2012)

    Article  Google Scholar 

  • Pouya, A., Vu, M.N., Ghabezloo, S., Bendjeddou, Z.: Effective permeability of cracked unsaturated porous materials. Int. J. Solids Struct. 50, 3297–3307 (2013)

    Article  Google Scholar 

  • Royer, P., Auriault, J., Boutin, C.: Macroscopic modeling of double-porosity reservoirs. J. Petrol. Sci. Eng. 16, 187–202 (1996)

    Article  Google Scholar 

  • Saffman, P.G.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50, 93–101 (1971)

    Article  Google Scholar 

  • Sanchez-Palencia, E.: Non-homogeneous media and vibration theory. Lect. Notes Phys. 127, (1981)

  • Sangani, A., Acrivos, A.: Slow flow through a periodic array of spheres. Int. J. Multiph. Flow 8, 343–360 (1982)

    Article  Google Scholar 

  • Sangani, A., Acrivos, A.: Creeping flow through cubic arrays of spherical bubbles. Int. J. Multiph. Flow 9, 181–185 (1983)

    Article  Google Scholar 

  • Sangaré, D., Thovert, J.F., Adler, P.M.: The equivalent thermal properties of a single fracture. J. Appl. Phys. 104, 074915 (2008)

    Article  Google Scholar 

  • Sharma, P., Dasgupta, A.: Average elastic fields and scale-dependent overall properties of heterogeneous micropolar materials containing spherical and cylindrical inhomogeneities. Phys. Rev. B 66, 224110 (2002)

    Article  Google Scholar 

  • Smith, J.C.: Correction and extension of van der poel’s method for calculating the shear modulus of a particulate composite. J. Res. Natl. Bur. Stand. 78A, 355–361 (1974)

    Article  Google Scholar 

  • Smith, J.C.: Simplification of van der poel’s formula for the shear modulus of a particulate composite. J. Res. Natl. Bur. Stand. 79A, 419–423 (1975)

    Article  Google Scholar 

  • Stora, E., He, Q.C., Bary, B.: Influence of inclusion shapes on the effective linear elastic properties of hardened cement pastes. Cem. Concr. Res. 36, 1330–1344 (2006)

    Article  Google Scholar 

  • Tran, A.T., Le-Quang, H., He, Q.C., Nguyen, D.H.: Solutions for two coupled stokes and darcy flows around and in spheroidal inclusions. J. Eng. Math. 132, 19 (2022)

    Article  Google Scholar 

  • Tran-Cong, T., Blake, J.: General solutions of the stokes’ flow equations. J. Math. Anal. Appl. 90, 72–84 (1982)

    Article  Google Scholar 

  • Wang, C.: Stokes flow through an array of rectangular fibers. Int. J. Multiph. Flow 22, 185–194 (1996)

    Article  Google Scholar 

  • Wang, C.: Stokes flow through a rectangular array of circular cylinders. Fluid Dyn. Res. 29, 65–80 (2001)

    Article  Google Scholar 

  • Wang, C.: Stokes slip flow through square and triangular arrays of circular cylinders. Fluid Dyn. Res. 32, 233–246 (2003)

    Article  Google Scholar 

  • Whitaker, S.: Diffusion and dispersion in porous media. AIChE J. 13, 420–427 (1967)

    Article  Google Scholar 

Download references

Funding

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 107.02-2017.310.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Le-Quang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Orthogonal Curvilinear Coordinates

Orthogonal curvilinear coordinates, used throughout this paper, are recalled below to rend it self-contained. Consider a surface \(\Gamma \) in a three-dimensional Euclidean space. In order to have a mathematical characterization of \(\Gamma \), a system of orthogonal curvilinear coordinates \(\{y_{1},y_{2},y_{3}\}\) is defined such that the position vector \(\mathbf {x}=(x_{1},x_{2},x_{3})\) of any point in space is expressed as

$$\begin{aligned} \mathbf {x}=\mathbf {x} (y_{1},y_{2},y_{3})=[x_{1}(y_{1},y_{2},y_{3}),x_{2}(y_{1},y_{2},y_{3}),x_{3}(y_{1},y_{2},y_{3})]. \end{aligned}$$
(78)

The vector tangent to the \(y_{i}\)-coordinate curve is calculated and given by

$$\begin{aligned} \mathbf {t}_{i}=\frac{\partial \mathbf {x}}{\partial y_{i}}=h_{i}\mathbf {f}_{i},\quad with \quad h_{i}=\left\| \frac{\partial \mathbf {x}}{\partial y_{i}}\right\| \end{aligned}$$
(79)

where the summation convention does not apply, \(h_{i}\) is a metric coefficient and \(\mathbf {f}_{i}\) is the unit vector tangent to the \(y_{i}\)-coordinate curve. Because the curvilinear coordinates \(y_{1}\), \(y_{2}\) and \(y_{3}\) are orthogonal, \(\mathbf {f}_{1}\), \(\mathbf {f}_{2}\) and \(\mathbf {f}_{3}\) are therefore orthonormal so that \(\mathbf {f}_{i}\cdot \mathbf {f}_{j}=\delta _{ij}\). The surface \(\Gamma \) can be now defined by

$$\begin{aligned} \Gamma =\left\{ \mathbf {x}=\mathbf {x}(y_{1},y_{2},y_{3})\in \mathbf {R}^{3}\mid y_{1}=\gamma _{0}\right\} \end{aligned}$$
(80)

where \(\gamma _{0}\) is a constant scalar value.

We denote by \(T(\mathbf {y})\) a scalar function and by \(\mathbf {T}(\mathbf {y})\) a vector function. The following differential operators for \(T(\mathbf {y})\) and \(\mathbf {T}(\mathbf {y})\) are given in the orthonormal curvilinear basis \(\{\mathbf {f}_{1},\mathbf {f}_{2},\mathbf {f}_{3}\}\) by:

  • Gradient of the scalar function \(T(\mathbf {y})\)

    $$\begin{aligned} \nabla T =\frac{1}{h_{1}}\frac{\partial T }{\partial y_{1}}\mathbf {f}_{1}+\frac{1}{h_{2}}\frac{\partial T}{\partial y_{2}} \mathbf {f}_{2}+\frac{1}{h_{3}}\frac{\partial T}{\partial y_{3}}\mathbf {f}_{3}; \end{aligned}$$
    (81)
  • Laplacian of the scalar function \(T(\mathbf {y})\)

    $$\begin{aligned} \varDelta T =\frac{1}{h_{1}h_{2}h_{3}}\left[ \frac{\partial }{\partial y_{1}}\left( \frac{h_{2}h_{3}}{h_{1}}\frac{\partial T }{\partial y_{1}}\right) + \frac{\partial }{\partial y_{2}}\left( \frac{h_{1}h_{3}}{h_{2}}\frac{ \partial T }{\partial y_{2}}\right) + \frac{\partial }{\partial y_{3}}\left( \frac{h_{1}h_{2}}{h_{3}}\frac{\partial T }{\partial y_{3}}\right) \right] ; \end{aligned}$$
    (82)
  • Divergence of the vector function \(\mathbf {T}(\mathbf {y})\)

    $$\begin{aligned} \nabla \cdot \mathbf {T}=\frac{1}{h_{1}h_{2}h_{3}}\left[ \frac{\partial \left( h_{2}h_{3}T_{1}\right) }{\partial y_{1}}+\frac{\partial \left( h_{1}h_{3}T_{2}\right) }{\partial y_{2}}+\frac{\partial \left( h_{1}h_{2}T_{3}\right) }{\partial y_{3}}\right] ; \end{aligned}$$
    (83)
  • Laplacian of the vector function \(\mathbf {T}(\mathbf {y})\)

    $$\begin{aligned} \varDelta \mathbf {T} = \{\varDelta \mathbf {T}\}_{1}\mathbf {f}_{1}+\{\varDelta \mathbf {T}\}_{2}\mathbf {f}_{2} + \{\varDelta \mathbf {T}\}_{3}\mathbf {f}_{3} \end{aligned}$$
    (84)

    where

    $$\begin{aligned} \{\varDelta \mathbf {T}\}_{1}= & {} \varDelta T_{1} \\+ & {} \frac{2}{h_{1}}\left( \frac{1}{h_1h_2}\frac{\partial h_1}{\partial y_2}\frac{\partial T_{2}}{\partial y_1}+\frac{1}{h_1h_3}\frac{\partial h_1}{\partial y_3}\frac{\partial T_{3}}{\partial y_1} - \frac{1}{h^2_2}\frac{\partial h_2}{\partial y_1}\frac{\partial T_{2}}{\partial y_2}- \frac{1}{h^2_3}\frac{\partial h_3}{\partial y_1}\frac{\partial T_{3}}{\partial y_3}\right) \\- & {} \frac{T_{1}}{h_1^2}\left[ \frac{1}{h_2^2}\left\{ \left( \frac{\partial h_2}{\partial y_1}\right) ^2+\left( \frac{\partial h_1}{\partial y_2}\right) ^2\right\} + \frac{1}{h_3^2}\left\{ \left( \frac{\partial h_3}{\partial y_1}\right) ^2+\left( \frac{\partial h_1}{\partial y_3}\right) ^2\right\} \right] \\+ & {} T_{2}\left[ \frac{1}{h_1h_2}\left\{ \frac{\partial }{\partial y_1}\left( \frac{1}{h_1}\frac{\partial h_1}{\partial y_2} \right) - \frac{\partial }{\partial y_1}\left( \frac{1}{h_2}\frac{\partial h_2}{\partial y_2} \right) \right\} + \frac{h_2}{h_1}\frac{\partial }{\partial y_1}\left( \frac{1}{h_2^2h_3}\frac{\partial h_3}{\partial y_2} \right) \right] \\+ & {} T_{3}\left[ \frac{1}{h_1h_3}\left\{ \frac{\partial }{\partial y_1}\left( \frac{1}{h_1}\frac{\partial h_1}{\partial y_3} \right) - \frac{\partial }{\partial y_1}\left( \frac{1}{h_3}\frac{\partial h_3}{\partial y_3} \right) \right\} + \frac{h_3}{h_1}\frac{\partial }{\partial y_1}\left( \frac{1}{h_3^2h_2}\frac{\partial h_2}{\partial y_3} \right) \right] ; \\ \{\varDelta \mathbf {T}\}_{2}= & {} \varDelta T_{2} \\+ & {} \frac{2}{h_{2}}\left( \frac{1}{h_2h_3}\frac{\partial h_2}{\partial y_3}\frac{\partial T_{3}}{\partial y_2}+\frac{1}{h_2h_1}\frac{\partial h_2}{\partial y_1}\frac{\partial T_{1}}{\partial y_2} - \frac{1}{h^2_3}\frac{\partial h_3}{\partial y_2}\frac{\partial T_{3}}{\partial y_3}- \frac{1}{h^2_1}\frac{\partial h_1}{\partial y_2}\frac{\partial T_{1}}{\partial y_1}\right) \\- & {} \frac{T_{2}}{h_2^2}\left[ \frac{1}{h_3^2}\left\{ \left( \frac{\partial h_3}{\partial y_2}\right) ^2+\left( \frac{\partial h_2}{\partial y_3}\right) ^2\right\} + \frac{1}{h_1^2}\left\{ \left( \frac{\partial h_1}{\partial y_2}\right) ^2+\left( \frac{\partial h_2}{\partial y_1}\right) ^2\right\} \right] \\+ & {} T_{3}\left[ \frac{1}{h_2h_3}\left\{ \frac{\partial }{\partial y_2}\left( \frac{1}{h_2}\frac{\partial h_2}{\partial y_3} \right) - \frac{\partial }{\partial y_2}\left( \frac{1}{h_3}\frac{\partial h_3}{\partial y_3} \right) \right\} + \frac{h_3}{h_2}\frac{\partial }{\partial y_2}\left( \frac{1}{h_3^2h_1}\frac{\partial h_1}{\partial y_3} \right) \right] \\+ & {} T_{1}\left[ \frac{1}{h_2h_1}\left\{ \frac{\partial }{\partial y_2}\left( \frac{1}{h_2}\frac{\partial h_2}{\partial y_1} \right) - \frac{\partial }{\partial y_2}\left( \frac{1}{h_1}\frac{\partial h_1}{\partial y_1} \right) \right\} + \frac{h_1}{h_2}\frac{\partial }{\partial y_2}\left( \frac{1}{h_1^2h_3}\frac{\partial h_3}{\partial y_1} \right) \right] ; \\ \{\varDelta \mathbf {T}\}_{3}= & {} \varDelta T_{3} \\+ & {} \frac{2}{h_{3}}\left( \frac{1}{h_3h_1}\frac{\partial h_3}{\partial y_1}\frac{\partial T_{1}}{\partial y_3}+\frac{1}{h_3h_2}\frac{\partial h_3}{\partial y_2}\frac{\partial T_{2}}{\partial y_3} - \frac{1}{h^2_1}\frac{ \partial h_1}{\partial y_3}\frac{\partial T_{1}}{\partial y_1}- \frac{1}{h^2_2}\frac{\partial h_2}{\partial y_3}\frac{\partial T_{2}}{\partial y_2}\right) \\- & {} \frac{T_{3}}{h_3^2}\left[ \frac{1}{h_1^2}\left\{ \left( \frac{\partial h_1}{\partial y_3}\right) ^2+\left( \frac{\partial h_3}{\partial y_1}\right) ^2\right\} + \frac{1}{h_2^2}\left\{ \left( \frac{\partial h_2}{\partial y_3}\right) ^2+\left( \frac{\partial h_3}{\partial y_2}\right) ^2\right\} \right] \\+ & {} T_{1}\left[ \frac{1}{h_3h_1}\left\{ \frac{\partial }{\partial y_3}\left( \frac{1}{h_3}\frac{\partial h_3}{\partial y_1} \right) - \frac{\partial }{\partial y_3}\left( \frac{1}{h_1}\frac{\partial h_1}{\partial y_1} \right) \right\} + \frac{h_1}{h_3}\frac{\partial }{\partial y_3}\left( \frac{1}{h_1^2h_2}\frac{\partial h_2}{\partial y_1} \right) \right] \\+ & {} T_{2}\left[ \frac{1}{h_3h_2}\left\{ \frac{\partial }{\partial y_3}\left( \frac{1}{h_3}\frac{\partial h_3}{\partial y_2} \right) - \frac{\partial }{\partial y_3}\left( \frac{1}{h_2}\frac{\partial h_2}{\partial y_2} \right) \right\} + \frac{h_2}{h_3}\frac{\partial }{\partial y_3}\left( \frac{1}{h_2^2h_1}\frac{\partial h_1}{\partial y_2} \right) \right] . \end{aligned}$$

Now, we consider the important cases where the surface \(\Gamma \) is spherical or spheroidal. The foregoing formulae are now specified in detail.

Spherical coordinate system

First, if the surface \(\Gamma \) is spherical, the orthogonal curvilinear coordinate system described above becomes the system of spherical coordinates \((r,\theta ,\phi )\), where \(y_{1}\equiv r\in [0,+\infty ]\) is the radial coordinate, \(y_{3}\equiv \phi \in [0,2\pi ]\) is the azimuthal angle and \(y_{2}\equiv \theta \in [0,\pi ]\) is the elevation angle with

$$\begin{aligned} r=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}},\quad \tan {\theta }=\sqrt{x_{1}^{2}+x_{2}^{2}}/x_{3},\quad \tan {\phi }=x_{2}/x_{1} \end{aligned}$$
(85)

or inversely,

$$\begin{aligned} x_{1}=r\cos \phi \sin \theta ,\quad x_{2}=r\sin \phi \sin \theta ,\quad x_{3}=r\cos \theta . \end{aligned}$$
(86)

This spherical coordinate system \((r,\theta ,\phi )\) is associated with the corresponding spherical orthonormal basis \(\{\mathbf {f}_{r},\mathbf {f}_{\theta },\mathbf {f}_{\phi }\}\) given by

$$\begin{aligned} \mathbf {f}_{1}\equiv \mathbf {f}_{r}= & {} \sin \theta (\cos \phi \mathbf {j}_{1}+\sin \phi \mathbf {j}_{2})+\cos \theta \mathbf {j}_{3}, \nonumber \\ \mathbf {f}_{2}\equiv \mathbf {f}_{\theta }= & {} \cos \theta (\cos \phi \mathbf {j}_{1}+\sin \phi \mathbf {j}_{2})-\sin \theta \mathbf {j}_{3},\\ \mathbf {f}_{3}\equiv \mathbf {f}_{\phi }= & {} -\sin \phi \mathbf {j}_{1}+\cos \phi \mathbf {j}_{2}. \nonumber \end{aligned}$$
(87)

The metric coefficients of the spherical coordinate system \((r, \phi , \theta )\) take the simple form

$$\begin{aligned} h_{1}\equiv h_{r}=1,\quad h_{2}\equiv h_{\theta }=r,\quad h_{3}\equiv h_{\phi }=r\sin \theta . \end{aligned}$$
(88)

The differential operators for \(T(r,\theta ,\phi )\) and \(\mathbf {T}(r,\theta ,\phi )\) take the following forms

  • Gradient of the scalar function \(T(r,\theta ,\phi )\)

    $$\begin{aligned} \nabla T = \frac{\partial T }{\partial r}\mathbf {f}_{r}+\frac{1}{r}\frac{\partial T}{\partial \theta } \mathbf {f}_{\theta }+\frac{1}{r\sin \theta }\frac{\partial T}{\partial \phi }\mathbf {f}_{\phi }; \end{aligned}$$
    (89)
  • Laplacian of the scalar function \(T(r,\theta ,\phi )\)

    $$\begin{aligned} \varDelta T = \frac{\partial ^2 T }{\partial r^2} + \frac{2}{r}\frac{\partial T}{\partial r} + \frac{1}{r^2}\frac{\partial ^2 T}{\partial ^2 \theta } + \frac{1}{r^2\tan \theta }\frac{\partial T}{\partial \theta } + \frac{1}{r^2\sin ^2\theta }\frac{\partial ^2 T}{\partial \phi ^2}; \end{aligned}$$
    (90)
  • Divergence of the vector function \(\mathbf {T}(r,\theta ,\phi )\)

    $$\begin{aligned} \nabla \cdot \mathbf {T} = \frac{\partial T_r}{\partial r} + \frac{2T_r}{r} + \frac{1}{r}\frac{\partial T_{\theta }}{\partial \theta } + \frac{T_{\theta }}{r\tan \theta }+\frac{1}{r\sin \theta }\frac{\partial T_{\phi }}{\partial \phi }; \end{aligned}$$
    (91)
  • Laplacian of the vector function \(\mathbf {T}(r,\theta ,\phi )\)

    $$\begin{aligned} \varDelta \mathbf {T} = \{\varDelta \mathbf {T}\}_{r}\mathbf {f}_{r}+\{\varDelta \mathbf {T}\}_{\theta }\mathbf {f}_{\theta } + \{\varDelta \mathbf {T}\}_{\phi }\mathbf {f}_{\phi } \end{aligned}$$
    (92)

    where

    $$\begin{aligned} \{\varDelta \mathbf {T}\}_{r}= & {} \varDelta T_{r} - \frac{2}{r^2}T_r - \frac{2\cot \theta }{r^2}T_{\theta } - \frac{2}{r^2}\frac{\partial T_{\theta }}{\partial \theta } - \frac{2}{r^2\sin \theta }\frac{\partial T_{\phi }}{\partial \phi };\\ \{\varDelta \mathbf {T}\}_{\theta }= & {} \varDelta T_{\theta } + \frac{2}{r^2}\frac{\partial T_r}{\partial \theta } - \frac{T_{\theta }}{r^2\sin ^2\theta } - \frac{2\cos \theta }{r^2\sin ^2\theta }\frac{\partial T_{\phi }}{\partial \phi }; \\ \{\varDelta \mathbf {T}\}_{\phi }= & {} \varDelta T_{\phi } + \frac{2}{r^2\sin \theta }\frac{\partial T_r}{\partial \phi } - \frac{T_{\phi }}{r^2\sin ^2\theta } + \frac{2\cos \theta }{r^2\sin ^2\theta }\frac{\partial T_{\theta }}{\partial \phi }. \end{aligned}$$

Prolate spheroidal coordinate system

Second, if the surface \(\Gamma \) has a prolate spheroidal form, the system of orthogonal curvilinear coordinates described above transforms to the one of prolate spheroidal coordinates \((\alpha ,\beta ,\gamma )\) with \(y_{1}\equiv \alpha \in [0,+\infty ]\), \(y_{3}\equiv \gamma \in [0,2\pi ]\) and \(y_{2}\equiv \beta \in [0,\pi ]\). By defining some additional notations as follows:

$$\begin{aligned} {\rho }=\cos \beta ,\;\bar{{\rho }}=\sqrt{1-{\rho }^{2}}=\sin \beta ,\;\mu =\cosh \alpha ,\;\bar{\mu }=\sqrt{\mu ^{2}-1}=\sinh \alpha \end{aligned}$$
(93)

where b and a (\(a>b\), or equivalently \(w=a/b>1\)) are the equatorial radius and the distance from center to pole along the symmetry axis of the spheroidal surface, respectively. The connection between the prolate spheroidal coordinates \((\alpha ,\beta ,\gamma )\) and the Cartesian coordinates \((x_{1},x_{2},x_{3})\) is expressed by

$$\begin{aligned} x_{1}=c\bar{{\rho }}\bar{\mu }\cos \gamma ,\quad x_{2}=c\bar{{\rho }}\bar{\mu }\sin \gamma ,\quad x_{3}=c{\rho }\mu \end{aligned}$$
(94)

where \(c=a/\mu \) denotes the distance from the focal point to the center of spheroidal surface. The prolate spheroidal coordinate system \((\alpha ,\beta ,\gamma )\) is relative to the corresponding prolate spheroidal orthonormal basis \(\{\mathbf {f}_{\alpha },\mathbf {f}_{\beta },\mathbf {f}_{\gamma }\}\) by

$$\begin{aligned} \mathbf {f}_{1}\equiv \mathbf {f}_{\alpha }=\frac{1}{\sqrt{\bar{{\rho }}^{2}+\bar{\mu }^{2}}}(\mu \bar{{\rho }}\cos \gamma \mathbf {j}_{1}+\mu \bar{{\rho }}\sin \gamma \mathbf {j}_{2}+\bar{\mu }{\rho }\mathbf {j}_{3}), \nonumber \\ \mathbf {f}_{2}\equiv \mathbf {f}_{\beta }=\frac{1}{\sqrt{\bar{{\rho }}^{2}+\bar{\mu }^{2}}}(\bar{\mu }{\rho }\cos \gamma \mathbf {j}_{1}+\bar{\mu }{\rho }\sin \gamma \mathbf {j}_{2}-\mu \bar{{\rho }}\mathbf {j}_{3}),\\ \mathbf {f}_{3}\equiv \mathbf {f}_{\gamma }=-\sin \gamma \mathbf {j}_{1}+\cos \gamma \mathbf {j}_{2}. \nonumber \end{aligned}$$
(95)

The metric coefficients of the prolate spheroidal coordinate system \((\alpha ,\beta ,\gamma )\) are given by

$$\begin{aligned} h_{1}\equiv h_{\alpha }= & {} c\sqrt{\mu ^{2}-{\rho }^{2}}\equiv 1/h,\quad h_{2}\equiv h_{\beta }=c\sqrt{\mu ^{2}-{\rho }^{2}}\equiv 1/h, \nonumber \\ h_{3}\equiv h_{\gamma }= & {} c\bar{\mu }\bar{{\rho }}\equiv 1/\bar{h}. \end{aligned}$$
(96)

The differential operators for \(T(\alpha ,\beta ,\gamma )\) and \(\mathbf {T}(\alpha ,\beta ,\gamma )\) are written in the prolate spheroidal coordinate system \((\alpha ,\beta ,\gamma )\) by

  • Gradient of the scalar function \(T(\alpha ,\beta ,\gamma )\)

    $$\begin{aligned} \nabla T =\frac{1}{c}\sqrt{\frac{\mu ^2-1}{\mu ^2 - {\rho }^2}} \frac{\partial T }{\partial \mu }\mathbf {f}_{\alpha } - \frac{1}{c}\sqrt{\frac{1-{\rho }^2}{\mu ^2 - {\rho }^2}} \frac{\partial T }{\partial {\rho }}\mathbf {f}_{\beta }+\frac{1}{c\sqrt{(\mu ^2-1)(1-{\rho }^2)}}\frac{\partial T }{\partial \phi }\mathbf {f}_{\gamma }; \end{aligned}$$
    (97)
  • Laplacian of the scalar function \(T(\alpha ,\beta ,\gamma )\)

    $$\begin{aligned} \varDelta T= & {} \frac{1}{c^2(\mu ^2-{\rho }^2)}\left\{ \frac{\partial }{\partial \mu }\left[ (\mu ^2-1)\frac{\partial T}{\partial \mu }\right] +\frac{\partial }{\partial {\rho }}\left[ (1-{\rho }^2)\frac{\partial T}{\partial {\rho }}\right] \right\} \nonumber \\+ & {} \frac{1}{c^2(\mu ^2-1)(1-{\rho }^2)}\frac{\partial ^2 T }{\partial \gamma ^2}; \end{aligned}$$
    (98)
  • Divergence of the vector function \(\mathbf {T}(\alpha ,\beta ,\gamma )\)

    $$\begin{aligned} \nabla \cdot \mathbf {T}= & {} \frac{1}{c(\mu ^2-{\rho }^2)}\left\{ \frac{\partial }{\partial \mu }\left[ T_{\alpha }\sqrt{(\mu ^2-1)(\mu ^2-{\rho }^2)}\right] \right. \nonumber \\+ & {} \left. \frac{\partial }{\partial {\rho }}\left[ T_{\beta }\sqrt{(1-{\rho }^2)(\mu ^2-{\rho }^2)}\right] \right\} +\frac{1}{c(\mu ^2-1)(1-{\rho }^2)}\frac{\partial T_{\gamma } }{\partial \gamma }; \end{aligned}$$
    (99)
  • Laplacian of the vector function \(\mathbf {T}(\alpha ,\beta ,\gamma )\)

    $$\begin{aligned} \varDelta \mathbf {T} = \{\varDelta \mathbf {T}\}_{\alpha }\mathbf {f}_{\alpha }+\{\varDelta \mathbf {T}\}_{\beta }\mathbf {f}_{\beta } + \{\varDelta \mathbf {T}\}_{\gamma }\mathbf {f}_{\gamma } \end{aligned}$$
    (100)

    where

    $$\begin{aligned} \{\varDelta \mathbf {T}\}_{\alpha }= & {} \varDelta T_{\alpha } - \frac{1}{c^2(\mu ^2-{\rho }^2)}\left[ \frac{2\mu ^2(\mu ^2-1)+(1-{\rho }^2)}{(\mu ^2-1)(\mu ^2-{\rho }^2)}T_{\alpha }\right. \\+ & {} \left. \frac{2{\rho }\sqrt{(\mu ^2-1)(1-{\rho }^2)}}{\mu ^2-{\rho }^2}\frac{\partial T_{\beta }}{\partial \mu }+\frac{2\mu \sqrt{(\mu ^2-1)(1-{\rho }^2)}}{\mu ^2-{\rho }^2}\frac{\partial T_{\beta }}{\partial {\rho }}\right. \\- & {} \left. \frac{2\mu {\rho }}{\mu ^2-{\rho }^2}\sqrt{\frac{\mu ^2-1}{1-{\rho }^2}}T_{\beta }+\frac{2\mu }{\mu ^2-1}\sqrt{\frac{\mu ^2-{\rho }^2}{1-{\rho }^2}}\frac{\partial T_{\gamma }}{\partial \gamma } \right] ; \\ \{\varDelta \mathbf {T}\}_{\beta }= & {} \varDelta T_{\beta } - \frac{1}{c^2(\mu ^2-{\rho }^2)}\left[ \frac{(\mu ^2-1)+2{\rho }^2(1-{\rho }^2)}{(1-{\rho }^2)(\mu ^2-{\rho }^2)}T_{\beta }\right. \\- & {} \left. \frac{2{\rho }\sqrt{(\mu ^2-1)(1-{\rho }^2)}}{\mu ^2-{\rho }^2}\frac{\partial T_{\alpha }}{\partial \alpha }-\frac{2\mu \sqrt{(\mu ^2-1)(1-{\rho }^2)}}{\mu ^2-{\rho }^2}\frac{\partial T_{\alpha }}{\partial {\rho }}\right. \\- & {} \left. \frac{2\mu {\rho }}{\mu ^2-{\rho }^2}\sqrt{\frac{1-{\rho }^2}{\mu ^2-1}}T_{\beta }-\frac{2{\rho }}{1-{\rho }^2}\sqrt{\frac{\mu ^2-{\rho }^2}{\mu ^2-1}}\frac{\partial T_{\gamma }}{\partial \gamma } \right] ;\\ \{\varDelta \mathbf {T}\}_{\gamma }= & {} \varDelta T_{\gamma } - \frac{1}{c^2(\mu ^2-{\rho }^2)}\left[ \frac{\mu ^2-{\rho }^2}{(\mu ^2-1)(1-{\rho }^2)}T_{\gamma }\right. \\- & {} \left. \frac{2\mu }{\mu ^2-1}\sqrt{\frac{\mu ^2-{\rho }^2}{1-{\rho }^2}}\frac{\partial T_{\alpha }}{\partial \gamma }+\frac{2{\rho }}{1-{\rho }^2}\sqrt{\frac{\mu ^2-{\rho }^2}{\mu ^2-1}}\frac{\partial T_{\beta }}{\partial \gamma }\right] . \end{aligned}$$

Appendix 2: Solutions for Two Coupled Stokes–Darcy Problems Used in the First- and Second-Scale Homogenizations

In this appendix, we briefly present the method to determine the expressions of the velocity and pressure fields of the fluid within the solid and fluid domains. For more details, the reader can refer to Tran et al. (2022).

Beginning with the solid domain and starting from the fact that the fluid flow through it is assumed to be incompressible and its velocity–pressure relation obeys to the Darcy’s law, it can be shown that the pressure solution field within the solid domain must satisfy the Laplace equation. This implies that the pressure solution field within the solid domain can be expressed as a scalar harmonic function. By accounting for the fact that the gradient pressure vector \(\mathbf {G}^{0}\) at infinity is prescribed, the pressure solution field for the coupled Stokes–Darcy problem of the first- or second-scale homogenization is, respectively, expressed, in the prolate spheroidal coordinate system \((\alpha ,\beta ,\gamma )\), as in Eq. (45) or (63). When the expression of the pressure solution field is obtained, the fluid velocity field can be determined directly by Darcy’s law as provided in Eq. (47) and

$$\begin{aligned} u^{(s)}_{\beta }(\mu ,{\rho },\gamma )= & {} \frac{K}{\sigma }\sqrt{\frac{1-{\rho }^2}{\mu ^2-{\rho }^2}} \left[ -G_{3}^{0}P_{1}(\mu )P^{\prime }_{1}({\rho }) - (G_{1}^{0}\cos \gamma \right. \nonumber \\+ & {} \left. G_{2}^{0}\sin \gamma )P^{1}_{1}(\mu )P_{1}^{1\prime }({\rho }) + \sum _{n=0}^{\infty }a^{(s)}_{n}Q_{n}(\mu )P^{\prime }_{n}({\rho })\right. \nonumber \\+ & {} \left. \sum _{n=1}^{\infty }(b^{(s)}_{n}\cos \gamma +c^{(s)}_{n}\sin \gamma )Q_{n}^{1}(\mu )P_{n}^{1\prime }({\rho }) \right] , \end{aligned}$$
(101)
$$\begin{aligned} u^{(s)}_{\gamma }(\mu ,{\rho },\gamma )= & {} -\frac{K}{\sigma \sqrt{(\mu ^2-{\rho }^2)(1-{\rho }^2)}}\left[ - (G_{1}^{0}\cos \gamma - G_{2}^{0}\sin \gamma )P^{1}_{1}(\mu )P_{1}^{1}({\rho })\right. \nonumber \\+ & {} \left. \sum _{n=1}^{\infty }(-b^{(s)}_{n}\sin \gamma +c^{(s)}_{n}\cos \gamma )Q_{n}^{1}(\mu )P_{n}^{1}({\rho }) \right] \end{aligned}$$
(102)

for the coupled Stokes–Darcy problem of the first-scale homogenization. Similarly, the fluid velocity field can be expressed as Eq. (65) and

$$\begin{aligned} U^{(s)}_{\beta }(\mu ,{\rho },\gamma )= & {} \frac{K}{\sigma }\sqrt{\frac{1-{\rho }^2}{\mu ^2-{\rho }^2}} \left[ -G_{3}^{0}P_{1}(\mu )P^{\prime }_{1}({\rho }) - (G_{1}^{0}\cos \gamma \right. \nonumber \\+ & {} \left. G_{2}^{0}\sin \gamma )P^{1}_{1}(\mu )P_{1}^{1\prime }({\rho }) + \sum _{n=0}^{\infty }A^{(s)}_{n}Q_{n}(\mu )P^{\prime }_{n}({\rho })\right. \nonumber \\+ & {} \left. \sum _{n=1}^{\infty }(B^{(s)}_{n}\cos \gamma +C^{(s)}_{n}\sin \gamma )Q_{n}^{1}(\mu )P_{n}^{1\prime }({\rho }) \right] , \end{aligned}$$
(103)
$$\begin{aligned} U^{(s)}_{\gamma }(\mu ,{\rho },\gamma )= & {} -\frac{K}{\sigma \sqrt{(\mu ^2-{\rho }^2)(1-{\rho }^2)}}\left[ - (G_{1}^{0}\cos \gamma - G_{2}^{0}\sin \gamma )P^{1}_{1}(\mu )P_{1}^{1}({\rho })\right. \nonumber \\+ & {} \left. \sum _{n=1}^{\infty }(-B^{(s)}_{n}\sin \gamma +C^{(s)}_{n}\cos \gamma )Q_{n}^{1}(\mu )P_{n}^{1}({\rho }) \right] \end{aligned}$$
(104)

for the coupled Stokes–Darcy problem of the second-scale homogenization.

Concerning the fluid domain, by applying the method based on the Papkovich–Neuber formulation which is proposed initially by Papkovich (1932) and Neuber (1934) for a three-dimensional elasticity problem and then extended to a Stokes flow problem by Tran-Cong and Blake (1982), the fluid pressure and velocity solution fields within the fluid domain can be expressed in terms of both a scalar harmonic function \(\chi (\mathbf {x})\) verifying \(\varDelta \chi (\mathbf {x}) = 0\) and a harmonic vector \(\mathbf {\Psi }(\mathbf {x})\) satisfying \(\varDelta \mathbf {\Psi }(\mathbf {x}) = \mathbf {0}\) as follows:

$$\begin{aligned} \mathbf {u}^{(f)}(\mathbf {x})= & {} \nabla (\mathbf {x}\cdot \mathbf {\Psi }+\chi )-2\mathbf {\Psi }, \end{aligned}$$
(105)
$$\begin{aligned} p^{(f)}(\mathbf {x})= & {} 2\sigma \nabla \cdot \mathbf {\Psi }. \end{aligned}$$
(106)

Relative to the prolate spheroidal coordinate system \((\alpha ,\beta ,\gamma )\), the scalar harmonic function \(\chi (\mu ,{\rho },\gamma )\) and the harmonic vector \(\mathbf {\Psi }(\mu ,{\rho },\gamma )\) can be expressed as follows:

$$\begin{aligned} \chi (\mu ,{\rho },\gamma )= & {} c\sum _{l=0}^{\infty }\sum _{m=0}^{l}\left( D^{(fp)}_{lm}\cos m\gamma + d^{(fp)}_{lm}\sin m\gamma \right) P_{l}^{m}(\mu )P_{l}^{m}({\rho }) \nonumber \\+ & {} c\sum _{l=0}^{\infty }\sum _{m=0}^{l}\left( D^{(fq)}_{lm}\cos m\gamma + d^{(fq)}_{lm}\sin m\gamma \right) Q_{l}^{m}(\mu )P_{l}^{m}({\rho }), \end{aligned}$$
(107)
$$\begin{aligned} \Psi _{\alpha }(\mu ,{\rho },\gamma )= & {} \sum _{l=0}^{\infty }\sum _{m=0}^{l}\left[ \mu \sqrt{\frac{1-{\rho }^2}{\mu ^2-{\rho }^2}}\cos \gamma \left( A^{(fp)}_{lm}\cos m\gamma + a^{(fp)}_{lm}\sin m\gamma \right) \right. \nonumber \\+ & {} \left. \mu \sqrt{\frac{1-{\rho }^2}{\mu ^2-{\rho }^2}}\sin \gamma \left( B^{(fp)}_{lm}\cos m\gamma + b^{(fp)}_{lm}\sin m\gamma \right) \right. \nonumber \\+ & {} \left. {\rho }\sqrt{\frac{\mu ^2-1}{\mu ^2-{\rho }^2}}\left( C^{(fp)}_{lm}\cos m\gamma + c^{(fp)}_{lm}\sin m\gamma \right) \right] P_{l}^{m}(\mu )P_{l}^{m}({\rho }) \nonumber \\+ & {} \sum _{l=0}^{\infty }\sum _{m=0}^{l}\left[ \mu \sqrt{\frac{1-{\rho }^2}{\mu ^2-{\rho }^2}}\cos \gamma \left( A^{(fq)}_{lm}\cos m\gamma + a^{(fq)}_{lm}\sin m\gamma \right) \right. \nonumber \\+ & {} \left. \mu \sqrt{\frac{1-{\rho }^2}{\mu ^2-{\rho }^2}}\sin \gamma \left( B^{(fq)}_{lm}\cos m\gamma + b^{(fq)}_{lm}\sin m\gamma \right) \right. \nonumber \\+ & {} \left. {\rho }\sqrt{\frac{\mu ^2-1}{\mu ^2-{\rho }^2}}\left( C^{(fq)}_{lm}\cos m\gamma + c^{(fq)}_{lm}\sin m\gamma \right) \right] Q_{l}^{m}(\mu )P_{l}^{m}({\rho }), \end{aligned}$$
(108)
$$\begin{aligned} \Psi _{\beta }(\mu ,{\rho },\gamma )= & {} \sum _{l=0}^{\infty }\sum _{m=0}^{l}\left[ {\rho }\sqrt{\frac{\mu ^2-1}{\mu ^2-{\rho }^2}}\cos \gamma \left( A^{(fp)}_{lm}\cos m\gamma + a^{(fp)}_{lm}\sin m\gamma \right) \right. \nonumber \\+ & {} \left. {\rho }\sqrt{\frac{\mu ^2-1}{\mu ^2-{\rho }^2}}\sin \gamma \left( B^{(fp)}_{lm}\cos m\gamma + b^{(fp)}_{lm}\sin m\gamma \right) \right. \nonumber \\- & {} \left. \mu \sqrt{\frac{1-{\rho }^2}{\mu ^2-{\rho }^2}}\left( C^{(fp)}_{lm}\cos m\gamma + c^{(fp)}_{lm}\sin m\gamma \right) \right] P_{l}^{m}(\mu )P_{l}^{m}({\rho }) \nonumber \\+ & {} \sum _{l=0}^{\infty }\sum _{m=0}^{l}\left[ {\rho }\sqrt{\frac{\mu ^2-1}{\mu ^2-{\rho }^2}}\cos \gamma \left( A^{(fq)}_{lm}\cos m\gamma + a^{(fq)}_{lm}\sin m\gamma \right) \right. \nonumber \\+ & {} \left. {\rho }\sqrt{\frac{\mu ^2-1}{\mu ^2-{\rho }^2}}\sin \gamma \left( B^{(fq)}_{lm}\cos m\gamma + b^{(fq)}_{lm}\sin m\gamma \right) \right. \nonumber \\- & {} \left. \mu \sqrt{\frac{1-{\rho }^2}{\mu ^2-{\rho }^2}}\left( C^{(fq)}_{lm}\cos m\gamma + c^{(fq)}_{lm}\sin m\gamma \right) \right] Q_{l}^{m}(\mu )P_{l}^{m}({\rho }), \end{aligned}$$
(109)
$$\begin{aligned} \Psi _{\gamma }(\mu ,{\rho },\gamma )= & {} \sum _{l=0}^{\infty }\sum _{m=0}^{l}\left[ -\sin \gamma \left( A^{(fp)}_{lm}\cos m\gamma + a^{(fp)}_{lm}\sin m\gamma \right) \right. \nonumber \\+ & {} \left. \cos \gamma \left( B^{(fp)}_{lm}\cos m\gamma + b^{(fp)}_{lm}\sin m\gamma \right) \right] P_{l}^{m}(\mu )P_{l}^{m}({\rho }) \nonumber \\+ & {} \sum _{l=0}^{\infty }\sum _{m=0}^{l}\left[ -\sin \gamma \left( A^{(fq)}_{lm}\cos m\gamma + a^{(fq)}_{lm}\sin m\gamma \right) \right. \nonumber \\+ & {} \left. \cos \gamma \left( B^{(fq)}_{lm}\cos m\gamma + b^{(fq)}_{lm}\sin m\gamma \right) \right] P_{l}^{m}(\mu )P_{l}^{m}({\rho }). \end{aligned}$$
(110)

In these equations, \(A^{(fp)}_{lm}\), \(B^{(fp)}_{lm}\), \(C^{(fp)}_{lm}\), \(D^{(fp)}_{lm}\), \(A^{(fq)}_{lm}\), \(B^{(fq)}_{lm}\), \(C^{(fq)}_{lm}\), \(D^{(fq)}_{lm}\) with \(l \ge m \ge 0\) and \(a^{(fp)}_{lm}\), \(b^{(fp)}_{lm}\), \(c^{(fp)}_{lm}\), \(d^{(fp)}_{lm}\), \(a^{(fq)}_{lm}\), \(b^{(fq)}_{lm}\), \(c^{(fq)}_{lm}\), \(d^{(fq)}_{lm}\) with \(l \ge m \ge 1\) are unknown constants to be determined from the interfacial fluid/solid conditions. By introducing Eqs. (107)-(110) into Eqs. (105) and (106) and by accounting for the differential operators specified in Appendix 1 in the prolate spheroidal coordinate system \((\alpha ,\beta ,\gamma )\), we obtain, for the coupled Stokes–Darcy problem of the first-scale homogenization, the expressions for the fluid pressure and velocity fields within the fluid domain as follows:

$$\begin{aligned}&p^{(f)}(\mu ,{\rho },\gamma ) =\frac{2\sigma }{c}\sum _{l=0}^{\infty }\sum _{m=0}^{l}\left\{ \frac{\sqrt{(\mu ^2-1)(1-{\rho }^2)}}{(\mu ^2-{\rho }^2)}\right. \nonumber \\&\times \left. \left[ \mu P_{l}^{m\prime }(\mu )P_{l}^{m}({\rho })-{\rho }P_{l}^{m}(\mu )P_{l}^{m\prime }({\rho })\right] \right. \nonumber \\&\times \left. \left[ \cos \gamma \left( A^{(fp)}_{lm}\cos m\gamma + a^{(fp)}_{lm}\sin m\gamma \right) +\sin \gamma \left( B^{(fp)}_{lm}\cos m\gamma + b^{(fp)}_{lm}\sin m\gamma \right) \right] \right. \nonumber \\&+\left. \frac{1}{\mu ^2-{\rho }^2}\left[ {\rho }(\mu ^2-1)P_{l}^{m\prime }(\mu )P_{l}^{m}({\rho })+\mu (1-{\rho }^2)P_{l}^{m}(\mu )P_{l}^{m\prime }({\rho })\right] \right. \nonumber \\&\times \left. \left( C^{(fp)}_{lm}\cos m\gamma + c^{(fp)}_{lm}\sin m\gamma \right) -\frac{m}{\sqrt{(\mu ^2-1)(1-{\rho }^2)}}P_{l}^{m}(\mu )P_{l}^{m}({\rho })\right. \nonumber \\&\times \left. \left[ \sin \gamma \left( a^{(fp)}_{lm}\cos m\gamma -A^{(fp)}_{lm}\sin m\gamma \right) -\cos \gamma \left( b^{(fp)}_{lm}\cos m\gamma - B^{(fp)}_{lm}\sin m\gamma \right) \right] \right\} , \nonumber \\&+\frac{2\sigma }{c}\sum _{l=0}^{\infty }\sum _{m=0}^{l}\left\{ \frac{\sqrt{(\mu ^2-1)(1-{\rho }^2)}}{(\mu ^2-{\rho }^2)}\left[ \mu Q_{l}^{m\prime }(\mu )P_{l}^{m}({\rho })-{\rho }Q_{l}^{m}(\mu )P_{l}^{m\prime }({\rho })\right] \right. \nonumber \\&\times \left. \left[ \cos \gamma \left( A^{(fq)}_{lm}\cos m\gamma + a^{(fq)}_{lm}\sin m\gamma \right) +\sin \gamma \left( B^{(fq)}_{lm}\cos m\gamma + b^{(fq)}_{lm}\sin m\gamma \right) \right] \right. \nonumber \\&+\left. \frac{1}{\mu ^2-{\rho }^2}\left[ {\rho }(\mu ^2-1)Q_{l}^{m\prime }(\mu )P_{l}^{m}({\rho })+\mu (1-{\rho }^2)Q_{l}^{m}(\mu )P_{l}^{m\prime }({\rho })\right] \right. \nonumber \\&\times \left. \left( C^{(fq)}_{lm}\cos m\gamma + c^{(fq)}_{lm}\sin m\gamma \right) -\frac{m}{\sqrt{(\mu ^2-1)(1-{\rho }^2)}}Q_{l}^{m}(\mu )P_{l}^{m}({\rho })\right. \nonumber \\&\times \left. \left[ \sin \gamma \left( a^{(fq)}_{lm}\cos m\gamma -A^{(fq)}_{lm}\sin m\gamma \right) -\cos \gamma \left( b^{(fq)}_{lm}\cos m\gamma - B^{(fq)}_{lm}\sin m\gamma \right) \right] \right\} \nonumber \\ \end{aligned}$$
(111)
$$\begin{aligned}&u_{\alpha }^{(f)}(\mu ,{\rho },\gamma ) =\sum _{l=0}^{\infty }\sum _{m=0}^{l}\left\{ \sqrt{\frac{1-{\rho }^2}{\mu ^2-{\rho }^2}}\left[ -\mu {\rho }_{l}^{m}(\mu )+(\mu ^2-1)P_{l}^{m\prime }(\mu )\right] P_{l}^{m}({\rho })\right. \nonumber \\&\times \left. \left[ \cos \gamma \left( A^{(fp)}_{lm}\cos m\gamma + a^{(fp)}_{lm}\sin m\gamma \right) +\sin \gamma \left( B^{(fp)}_{lm}\cos m\gamma + b^{(fp)}_{lm}\sin m\gamma \right) \right] \right. \nonumber \\&+\left. {\rho }\sqrt{\frac{\mu ^2-1}{\mu ^2-{\rho }^2}}\left[ -P_{l}^{m}(\mu )+\mu {\rho }_{l}^{m\prime }(\mu )\right] P_{l}^{m}({\rho })\left( C^{(fp)}_{lm}\cos m\gamma + c^{(fp)}_{lm}\sin m\gamma \right) \right. \nonumber \\&+ \left. \sqrt{\frac{\mu ^2-1}{\mu ^2-{\rho }^2}}P_{l}^{m\prime }(\mu )P_{l}^{m}({\rho })\left( D^{(fp)}_{lm}\cos m\gamma + d^{(fp)}_{lm}\sin m\gamma \right) \right\} \nonumber \\&+\sum _{l=0}^{\infty }\sum _{m=0}^{l}\left\{ \sqrt{\frac{1-{\rho }^2}{\mu ^2-{\rho }^2}}\left[ -\mu Q_{l}^{m}(\mu )+(\mu ^2-1)Q_{l}^{m\prime }(\mu )\right] P_{l}^{m}({\rho })\right. \nonumber \\&\times \left. \left[ \cos \gamma \left( A^{(fq)}_{lm}\cos m\gamma + a^{(fq)}_{lm}\sin m\gamma \right) +\sin \gamma \left( B^{(fq)}_{lm}\cos m\gamma + b^{(fq)}_{lm}\sin m\gamma \right) \right] \right. \nonumber \\&+\left. {\rho }\sqrt{\frac{\mu ^2-1}{\mu ^2-{\rho }^2}}\left[ -Q_{l}^{m}(\mu )+\mu Q_{l}^{m\prime }(\mu )\right] P_{l}^{m}({\rho })\left( C^{(fq)}_{lm}\cos m\gamma + c^{(fq)}_{lm}\sin m\gamma \right) \right. \nonumber \\&+ \left. \sqrt{\frac{\mu ^2-1}{\mu ^2-{\rho }^2}}Q_{l}^{m\prime }(\mu )P_{l}^{m}({\rho })\left( D^{(fq)}_{lm}\cos m\gamma + d^{(fq)}_{lm}\sin m\gamma \right) \right\} , \end{aligned}$$
(112)
$$\begin{aligned}&u_{\beta }^{(f)}(\mu ,{\rho },\gamma ) = -\sum _{l=0}^{\infty }\sum _{m=0}^{l}\left\{ \sqrt{\frac{\mu ^2-1}{\mu ^2-{\rho }^2}}\left[ {\rho }P_{l}^{m}({\rho })+(1-{\rho }^2)P_{l}^{m\prime }({\rho })\right] P_{l}^{m}(\mu )\right. \nonumber \\&\times \left. \left[ \cos \gamma \left( A^{(fp)}_{lm}\cos m\gamma + a^{(fp)}_{lm}\sin m\gamma \right) +\sin \gamma \left( B^{(fp)}_{lm}\cos m\gamma + b^{(fp)}_{lm}\sin m\gamma \right) \right] \right. \nonumber \\&+\left. \mu \sqrt{\frac{1-{\rho }^2}{\mu ^2-{\rho }^2}}\left[ -P_{l}^{m}({\rho })+{\rho }P_{l}^{m\prime }({\rho })\right] P_{l}^{m}(\mu )\left( C^{(fp)}_{lm}\cos m\gamma + c^{(fp)}_{lm}\sin m\gamma \right) \right. \nonumber \\&+ \left. \sqrt{\frac{1-{\rho }^2}{\mu ^2-{\rho }^2}}P_{l}^{m}(\mu )P_{l}^{m\prime }({\rho })\left( D^{(fp)}_{lm}\cos m\gamma + d^{(fp)}_{lm}\sin m\gamma \right) \right\} \nonumber \\&-\sum _{l=0}^{\infty }\sum _{m=0}^{l}\left\{ \sqrt{\frac{\mu ^2-1}{\mu ^2-{\rho }^2}}\left[ {\rho }P_{l}^{m}({\rho })+(1-{\rho }^2)P_{l}^{m\prime }({\rho })\right] Q_{l}^{m}(\mu )\right. \nonumber \\&\times \left. \left[ \cos \gamma \left( A^{(fq)}_{lm}\cos m\gamma + a^{(fq)}_{lm}\sin m\gamma \right) +\sin \gamma \left( B^{(fq)}_{lm}\cos m\gamma + b^{(fq)}_{lm}\sin m\gamma \right) \right] \right. \nonumber \\&+\left. \mu \sqrt{\frac{1-{\rho }^2}{\mu ^2-{\rho }^2}}\left[ -P_{l}^{m}({\rho })+{\rho }P_{l}^{m\prime }({\rho })\right] Q_{l}^{m}(\mu )\left( C^{(fq)}_{lm}\cos m\gamma + c^{(fq)}_{lm}\sin m\gamma \right) \right. \nonumber \\&+ \left. \sqrt{\frac{1-{\rho }^2}{\mu ^2-{\rho }^2}}Q_{l}^{m}(\mu )P_{l}^{m\prime }({\rho })\left( D^{(fq)}_{lm}\cos m\gamma + d^{(fq)}_{lm}\sin m\gamma \right) \right\} , \end{aligned}$$
(113)
$$\begin{aligned}&u_{\gamma }^{(f)}(\mu ,{\rho },\gamma ) = -\sum _{l=0}^{\infty }\sum _{m=0}^{l}\left\{ \sin \gamma \left( A^{(fp)}_{lm}\cos m\gamma + a^{(fp)}_{lm}\sin m\gamma \right) \right. \nonumber \\&-\left. \cos \gamma \left( B^{(fp)}_{lm}\cos m\gamma + b^{(fp)}_{lm}\sin m\gamma \right) +m\cos \gamma \left( a^{(fp)}_{lm}\cos m\gamma -A^{(fp)}_{lm}\sin m\gamma \right) \right. \nonumber \\&+\left. m\sin \gamma \left( b^{(fp)}_{lm}\cos m\gamma -B^{(fp)}_{lm}\sin m\gamma \right) \right. \nonumber \\&+ \left. \frac{m{\rho }\mu }{\sqrt{(\mu ^2-1)(1-{\rho }^2)}}\left( -C^{(fp)}_{lm}\sin m\gamma + c^{(fp)}_{lm}\cos m\gamma \right) \right. \nonumber \\&+\left. \frac{m}{\sqrt{(\mu ^2-1)(1-{\rho }^2)}}\left( -D^{(fp)}_{lm}\sin m\gamma + d^{(fp)}_{lm}\cos m\gamma \right) \right\} P_{l}^{m}(\mu )P_{l}^{m}({\rho }) \nonumber \\&-\sum _{l=0}^{\infty }\sum _{m=0}^{l}\left\{ \sin \gamma \left( A^{(fq)}_{lm}\cos m\gamma + a^{(fq)}_{lm}\sin m\gamma \right) \right. \nonumber \\&-\left. \cos \gamma \left( B^{(fq)}_{lm}\cos m\gamma + b^{(fq)}_{lm}\sin m\gamma \right) +m\cos \gamma \left( a^{(fq)}_{lm}\cos m\gamma -A^{(fq)}_{lm}\sin m\gamma \right) \right. \nonumber \\&+\left. m\sin \gamma \left( b^{(fq)}_{lm}\cos m\gamma -B^{(fq)}_{lm}\sin m\gamma \right) \right. \nonumber \\&+ \left. \frac{m{\rho }\mu }{\sqrt{(\mu ^2-1)(1-{\rho }^2)}}\left( -C^{(fq)}_{lm}\sin m\gamma + c^{(fq)}_{lm}\cos m\gamma \right) \right. \nonumber \\&+\left. \frac{m}{\sqrt{(\mu ^2-1)(1-{\rho }^2)}}\left( -D^{(fq)}_{lm}\sin m\gamma + d^{(fq)}_{lm}\cos m\gamma \right) \right\} Q_{l}^{m}(\mu )P_{l}^{m}({\rho }). \end{aligned}$$
(114)

In the coupled Stokes–Darcy problem corresponding to the second-scale homogenization, the fluid pressure and velocity fields, \(P^{(f)}\) and \(\mathbf {U}^{(f)}\), within the fluid domain, take the same expressions as in Eqs. (111)-(114). However, the requirement of the pressure and velocity of the fluid at the center of the spheroidal fluid-filled pore, i.e., \(\mu =1\), to be finite implies that \(A^{(fq)}_{lm} = B^{(fq)}_{lm} = C^{(fq)}_{lm} = D^{(fq)}_{lm}= a^{(fq)}_{lm}= b^{(fq)}_{lm} = c^{(fq)}_{lm} = d^{(fq)}_{lm} = 0\).

Appendix 3: Expression of the Classical Eshelby Permeability Tensor \(\mathbf {S}\) for an Ellipsoidal Inclusion

This appendix is dedicated to specifying the expression of the classical Eshelby permeability tensor \(\mathbf {S}\) for an ellipsoidal inclusion, with three axis lengths \(2a_{1}\), \(2a_{2}\) and \(2a_{3}\) such that \(0<a_{1}<a_{2}<a_{3}\), embedded in an infinite homogeneous isotropic medium of permeability k. By considering the case where the principal axes of lengths \(2a_{1}\), \(2a_{2}\) and \(2a_{3}\) of the ellipsoidal inclusion are aligned along the directions defined by three orthonormal vectors \(\mathbf {n}_{1}\), \(\mathbf {n}_{2}\) and \(\mathbf {n}_{3}\), the explicit expression of the classical Eshelby tensor is given by (see, e.g., Duan et al. (2006))

$$\begin{aligned} \mathbf {S}=\sum _{i=1}^{3}S_{ii}\mathbf {n}_{i}\otimes \mathbf {n}_{i} \end{aligned}$$
(115)

where

$$\begin{aligned}&S_{11}=\frac{1}{1-\lambda _{1}^{2}}-\frac{\lambda _{1}}{(1-\lambda _{1}^{2})\sqrt{1-\lambda _{1}^{2}\lambda _{2}^{2}}}E(\nu ,\kappa ), \nonumber \\&S_{33}=\frac{\lambda _{1}\lambda _{2}^{2}}{(1-\lambda _{1}^{2})\sqrt{1-\lambda _{1}^{2}\lambda _{2}^{2}}}[F(\nu ,\kappa )-(E(\nu ,\kappa )], \nonumber \\&S_{22}=1-S_{11}^{\mathcal {E}\omega }-S_{33}^{\mathcal {E}\omega }. \end{aligned}$$
(116)

In Eq. (116), \(\lambda _{1}=a_{1}/a_{2}\) and \(\lambda _{2}=a_{2}/a_{3}\); \(F(\nu ,\kappa )\) and \(E(\nu ,\kappa )\) are elliptic integrals of the first and second kinds defined by

$$\begin{aligned} F(\nu ,\kappa )=\int _{0}^{\nu }(1-\kappa ^{2}\sin ^{2}t)^{-1/2}\text {d}t,\quad E(\nu ,\kappa )=\int _{0}^{\nu }(1-\kappa ^{2}\sin ^{2}t)^{1/2}\text {d}t \end{aligned}$$
(117)

with

$$\begin{aligned} \nu =\arcsin \sqrt{1-\lambda _{1}^{2}\lambda _{2}^{2}},\quad \kappa =\sqrt{1-\lambda _{2}^{2}}\sqrt{1-\lambda _{1}^{2}\lambda _{2}^{2}}. \end{aligned}$$
(118)

In particular case of spheroidal inclusion with \(w=a_{3}/a_{1}=a_{3}/a_{2}\), the expressions of \(S_{11}^{\mathcal {E}}\), \(S_{22}^{\mathcal {E}}\) and \(S_{33}^{\mathcal {E}}\) reduce to

$$\begin{aligned} S_{11}=S_{22}=\frac{L(w)}{2},\quad S_{33}=1-L(w), \end{aligned}$$
(119)

where L(w) is defined by

$$\begin{aligned} L(w)=\left\{ \begin{array}{ll} \frac{w[\cos ^{-1}(w)-w\sqrt{1-w^{2}}]}{\sqrt{(1-w^{2})^{3}}} &{} \quad \text {for w<1,} \\ \frac{w[w\sqrt{w^{2}-1}-\cosh ^{-1}(w)]}{\sqrt{(w^{2}-1)^{3}}} &{} \quad \text {for w>1.} \end{array} \right. \end{aligned}$$
(120)

We recall that \(w<1\) corresponds to an oblate spheroid whereas \(w>1\) relative to a prolate spheroid. In particular, the expressions (119) for a spherical inclusion are considerably simplified and reduce to \(S_{11}^{\mathcal {S}\omega }=S_{22}^{\mathcal {S}\omega }=S_{33}^{\mathcal {S}\omega }=\frac{1}{3}\).

Appendix 4: Derivation of the Self-consistency Condition (19)

We first consider an effective homogeneous and infinite permeable solid medium \(\varOmega \) of external boundary \(\partial \varOmega \) and permeability tensor \(\mathbf {k}^{\text {micro}}\). Under the boundary condition (18), the velocity vector and pressure fields in \(\varOmega \) are given by

$$\begin{aligned} p^{(0)}(\mathbf {x}) = -\mathbf {G}^{0}\cdot \mathbf {x},\quad \mathbf {u}^{(0)}(\mathbf {x}) = \frac{1}{\sigma }\mathbf {k}^{\text {micro}}\cdot \mathbf {G}^{0}. \end{aligned}$$
(121)

Consequently, the viscous dissipation \(\mathcal {W}_{0}(\mathbf {G}^{0})\) of \(\varOmega \) takes the following simple form

$$\begin{aligned} \mathcal {W}_{0}(\mathbf {G}^{0}) = \frac{1}{2}\int _{\varOmega }u^{(0)}_{i}(-p^{(0)}_{,i})\text {d}\mathbf {x} =\frac{1}{2\sigma }\text {vol}(\varOmega )\mathbf {G}^{0}\cdot \mathbf {k}^{\text {micro}}\cdot \mathbf {G}^{0}. \end{aligned}$$
(122)

After introducing the coated prolate spheroidal inclusion \(\text {RVE}^{\text {n}-\mu }\) into \(\varOmega \) and imposing the same boundary condition on \(\partial \varOmega \) as before, the viscous dissipation \(\mathcal {W}(\mathbf {G}^{0})\) is given by

$$\begin{aligned} \mathcal {W}(\mathbf {G}^{0}) = \frac{1}{2}\int _{\varOmega ^{(s)}}u^{(s)}_{i}(-p^{(s)}_{,i})\text {d}\mathbf {x} + \int _{\omega ^{(f)}}\sigma \varepsilon ^{(f)}_{ij}\varepsilon ^{(f)}_{ij}\text {d}\mathbf {x} \end{aligned}$$
(123)

where \(\varepsilon ^{(f)}_{ij} = (u^{(f)}_{i,j}+u^{(f)}_{j,i})/2\) denotes the component of the strain-rate tensor of the fluid within \(\omega ^{(f)}\).

It follows from Eqs. (122) and (123) that

$$\begin{aligned} 2(\mathcal {W}_{0}(\mathbf {G}^{0})-\mathcal {W}(\mathbf {G}^{0}))= & {} \int _{\varOmega ^{(s)}}(u^{(0)}_{i}+u^{(s)}_{i})(p^{(s)}_{,i}-p^{(0)}_{,i})\text {d}\mathbf {x} + \int _{\varOmega ^{(s)}}(u^{(s)}_{i}p^{(0)}_{,i}-u^{(0)}_{i}p^{(s)}_{,i})\text {d}\mathbf {x}\nonumber \\- & {} \int _{\omega ^{(f)}}2\sigma \varepsilon ^{(f)}_{ij}\varepsilon ^{(f)}_{ij}\text {d}\mathbf {x}-\int _{\omega ^{(f)}\cup \omega ^{(s)}}u^{(0)}_{i}p^{(0)}_{,i}\text {d}\mathbf {x}. \end{aligned}$$
(124)

By applying the divergence theorem and by taking into account that \(\nabla \cdot \mathbf {u}^{(s)} = \nabla \cdot \mathbf {u}^{(0)} = 0\), it is immediate that

$$\begin{aligned} 2(\mathcal {W}_{0}(\mathbf {G}^{0})-\mathcal {W}(\mathbf {G}^{0}))= & {} \int _{\varOmega ^{(s)}}(u^{(s)}_{i}p^{(0)}_{,i}-u^{(0)}_{i}p^{(s)}_{,i})\text {d}\mathbf {x}+ \int _{\partial \varOmega }(u^{(0)}_{i}+u^{(s)}_{i})n_i(p^{(s)}-p^{(0)})\text {d}\mathbf {x}\nonumber \\- & {} \int _{\partial \text {RVE}^{\text {n}-\mu }}(u^{(0)}_{i}+u^{(s)}_{i})n_i(p^{(s)}-p^{(0)})\text {d}\mathbf {x}-\int _{\omega ^{(f)}}2\sigma \varepsilon ^{(f)}_{ij}\varepsilon ^{(f)}_{ij}\text {d}\mathbf {x}\nonumber \\- & {} \int _{\omega ^{(f)}\cup \omega ^{(s)}}u^{(0)}_{i}p^{(0)}_{,i}\text {d}\mathbf {x}. \end{aligned}$$
(125)

Accounting for the boundary condition \(p^{(0)}(\mathbf {x}) = p^{(s)}(\mathbf {x}) = -\mathbf {G}^{0}\cdot \mathbf {x}\) with \(\mathbf {x}\in \partial \varOmega \) and the Darcy’s law \(\mathbf {u}^{(s)}(\mathbf {x}) = -\frac{1}{\sigma }\mathbf {k}^{\text {micro}}\cdot \nabla p^{(s)}(\mathbf {x})\) and \(\mathbf {u}^{(0)}(\mathbf {x}) = -\frac{1}{\sigma }\mathbf {k}^{\text {micro}}\cdot \nabla p^{(0)}(\mathbf {x})\) with \(\mathbf {x}\in \varOmega ^{(s)}\), it is clear that

$$\begin{aligned} \int _{\varOmega ^{(s)}}(u^{(s)}_{i}p^{(0)}_{,i}-u^{(0)}_{i}p^{(s)}_{,i})\text {d}\mathbf {x} = 0\quad \text {and}\quad \int _{\partial \varOmega }(u^{(0)}_{i}+u^{(s)}_{i})n_i(p^{(s)}-p^{(0)})\text {d}\mathbf {x} = 0. \end{aligned}$$
(126)

Once again, it follows from the divergence theorem and the incompressibility condition \(\nabla \cdot \mathbf {u}^{(0)} = 0\) that

$$\begin{aligned} \int _{\partial \text {RVE}^{\text {n}-\mu }}u^{(0)}_{i}n_ip^{(0)}\text {d}\mathbf {x}-\int _{\omega ^{(f)}\cup \omega ^{(s)}}u^{(0)}_{i}p^{(0)}_{,i}\text {d}\mathbf {x} = 0. \end{aligned}$$
(127)

Substituting Eqs. (126) and (127) into Eq. (125), we have

$$\begin{aligned} 2(\mathcal {W}_{0}(\mathbf {G}^{0})-\mathcal {W}(\mathbf {G}^{0}))= & {} \int _{\partial \text {RVE}^{\text {n}-\mu }}(u^{(s)}_{i}n_ip^{(0)}-u^{(0)}_{i}n_ip^{(s)})\text {d}\mathbf {x}-\int _{\omega ^{(f)}}2\sigma \varepsilon ^{(f)}_{ij}\varepsilon ^{(f)}_{ij}\text {d}\mathbf {x}\nonumber \\- & {} \int _{\partial \text {RVE}^{\text {n}-\mu }}u^{(s)}_{i}n_ip^{(s)}\text {d}\mathbf {x}. \end{aligned}$$
(128)

On the other hand, we have

$$\begin{aligned} \int _{\omega ^{(f)}}2\sigma \varepsilon ^{(f)}_{ij}\varepsilon ^{(f)}_{ij}\text {d}\mathbf {x}= & {} \frac{\sigma }{2}\int _{\omega ^{(f)}}(u^{(f)}_{i,j}+u^{(f)}_{j,i})(u^{(f)}_{i,j}+u^{(f)}_{j,i})\text {d}\mathbf {x} = \sigma \int _{\omega ^{(f)}}(u^{(f)}_{i,j}u^{(f)}_{i,j}+u^{(f)}_{i,j}u^{(f)}_{j,i})\text {d}\mathbf {x}\nonumber \\= & {} \sigma \int _{\omega ^{(f)}}[(u^{(f)}_{i}u^{(f)}_{i,j})_{,j}-u^{(f)}_{i,jj}u^{(f)}_{i}+(u^{(f)}_{j}u^{(f)}_{i,j})_{,i}-u^{(f)}_{i,ji}u^{(f)}_{j}]\text {d}\mathbf {x}. \end{aligned}$$
(129)

Using the divergence theorem together with \(\mathbf {u}^{(f)} = \mathbf {0}\) on \(\partial \omega ^{(s)}\), \(\sigma \varDelta \mathbf {u}^{(f)} = \nabla p^{(f)}\) and \(\nabla \cdot \mathbf {u}^{(f)} = 0\) in \(\omega ^{(f)}\), Eq. (129) is reduced to

$$\begin{aligned} \int _{\omega ^{(f)}}2\sigma \varepsilon ^{(f)}_{ij}\varepsilon ^{(f)}_{ij}\text {d}\mathbf {x}= & {} \int _{\partial \text {RVE}^{\text {n}-\mu }}[\sigma (u^{(f)}_{i,j}+u^{(f)}_{j,i})n_ju^{(f)}_{i}-u^{(f)}_{i}n_ip^{(f)}]\text {d}\mathbf {x} . \end{aligned}$$
(130)

By setting \(\varvec{\tau }^{(f)} = \sigma [\nabla \mathbf {u}^{(f)}+\nabla ^{T}\mathbf {u}^{(f)}]\) and \(\mathbf {t}^{(f)} = \varvec{\tau }^{(f)}\cdot \mathbf {n}\), it follows from Eq. (130) that

$$\begin{aligned} \int _{\omega ^{(f)}}2\sigma \varvec{\varepsilon }^{(f)}:\varvec{\varepsilon }^{(f)}\text {d}\mathbf {x}= & {} \int _{\partial \text {RVE}^{\text {n}-\mu }}(\varvec{\tau }^{(f)}\cdot \mathbf {n}-p^{(f)}\mathbf {n})\cdot \mathbf {u}^{(f)}\text {d}\mathbf {x} \nonumber \\= & {} \int _{\partial \text {RVE}^{\text {n}-\mu }}[\mathbf {n}\otimes \mathbf {n}\cdot \varvec{\tau }^{(f)}\cdot \mathbf {n}-p^{(f)}\mathbf {n}+(\mathbf {I}-\mathbf {n}\otimes \mathbf {n})\cdot \varvec{\tau }^{(f)}\cdot \mathbf {n}]\cdot \mathbf {u}^{(f)}\text {d}\mathbf {x} \nonumber \\= & {} \int _{\partial \text {RVE}^{\text {n}-\mu }}(\mathbf {n}\cdot \varvec{\tau }^{(f)}\cdot \mathbf {n}-p^{(f)})\mathbf {u}^{(f)}\cdot \mathbf {n}\text {d}\mathbf {x}\nonumber \\+ & {} \int _{\partial \text {RVE}^{\text {n}-\mu }}\mathbf {t}^{(f)}\cdot (\mathbf {I}-\mathbf {n}\otimes \mathbf {n})\cdot \mathbf {u}^{(f)}\text {d}\mathbf {x}. \end{aligned}$$
(131)

When the interfacial conditions (20)-(22) are adopted, Eq. (131) can be expressed in the following equivalent form

$$\begin{aligned} \int _{\omega ^{(f)}}2\sigma \varvec{\varepsilon }^{(f)}:\varvec{\varepsilon }^{(f)}\text {d}\mathbf {x}= & {} \int _{\partial \text {RVE}^{\text {n}-\mu }}-p^{(s)}\mathbf {u}^{(s)}\cdot \mathbf {n}\text {d}\mathbf {x}. \end{aligned}$$
(132)

By combining Eq. (128) with Eq. (132), we have

$$\begin{aligned} 2(\mathcal {W}_{0}(\mathbf {G}^{0})-\mathcal {W}(\mathbf {G}^{0})) =\int _{\partial \text {RVE}^{\text {n}-\mu }}(u^{(s)}_{i}n_ip^{(0)}-u^{(0)}_{i}n_ip^{(s)})\text {d}\mathbf {x}. \end{aligned}$$
(133)

Since this last equation, the self-consistency condition \(\mathcal {W}_{0}(\mathbf {G}^{0}) = \mathcal {W}(\mathbf {G}^{0})\) can be recast into (19).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, AT., Le-Quang, H., He, QC. et al. Determination of the Effective Permeability of Doubly Porous Materials by a Two-Scale Homogenization Approach. Transp Porous Med 145, 197–243 (2022). https://doi.org/10.1007/s11242-022-01846-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-022-01846-9

Keywords

Navigation