Skip to main content
Log in

Water Transport in Bio-based Porous Materials: A Model of Local Kinetics of Sorption—Application to Three Hemp Concretes

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The classic models describing the hygric mass transfers inside porous materials seem unsuitable in the case of bio-based materials. They are based on the assumption of instantaneous local equilibrium between relative humidity and water content (Künzel in Simultaneous heat and moisture transport in building components—one- and two-dimensional calculation using simple parameters, Fraunhofer IRB Verlag, Stuttgart, 1995). These two parameters evolve according to the diffusive fluxes following the sorption isotherms. This study shows that it leads to predicting much shorter times of stabilization than those experimentally obtained. A new approach is presented here; it is free from the local instantaneous equilibrium introducing a local kinetics to describe the transformation of water from vapor state to liquid state and vice versa. The local kinetics of sorption is coupled with the well-known hysteresis phenomenon. It is adjusted from bibliographic data (Collet et al. in Energy Build 62:294–303, 2013) giving mass evolution of three hemp concretes under adsorption/desorption conditions. 1D cylindrical simulations allow an excellent fitting on the experiments. Finally, a semiempirical model is proposed, allowing to determine the kinetics parameters more easily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexandersson, M., Askfelt, H., Ristinmaa, M.: Triphasic model of heat and moisture transport with internal mass exchange in paperboard. Transp. Porous Med. 112, 381–408 (2016)

    Article  Google Scholar 

  • Anderson, R.B., Hall, W.K.: Modifications of the Brunauer, Emmett and Teller, equation II. J. Am. Chem. Soc. 70(5), 1727–1734 (1948)

    Article  Google Scholar 

  • Bouers, F., Sotolongo-Costa, O.: Generalized fractal kinetics in complex systems (application to biophysics and biotechnology). Physica A 368, 165–175 (2006)

    Article  Google Scholar 

  • Brown, M.E., Dollimore, D., Galwey, A.K.: Reactions in the solid state. In: Bamford, C.H., Tiper, C.F.H. (eds.) Comprehensive Chemical Kinetics, vol. 22, p. 340. Elsevier, Amsterdam (1980)

    Google Scholar 

  • Carmeliet, J., De Wit, M., Janssen, H.: Hysteresis and moisture buffering of wood. In: 7th Nordic Symposium on Building Physics, Reykjavik, Islande (2005)

  • Chamoin, J.: Optimisation des propriétés (physiques, mécaniques et hydriques) de bétons de chanvre par la maîtrise de la formulation. Ph.D. thesis, Génie civil, INSA de Rennes (2013)

  • Collet, F., Chamoin, J., Pretot, S., Lanos, C.: Comparison of the hygric behaviour of three hemp concretes. Energy Build. 62, 294–303 (2013)

    Article  Google Scholar 

  • Christensen, G.N.: The rate of sorption of water vapour by wood and pulp. Appita J. 13, 112–123 (1959)

    Google Scholar 

  • Eitelberger, J., Svensson, S.: The sorption behavior of wood studied by means of an improved cup method. Transp. Porous Med. 92, 321–335 (2012)

    Article  Google Scholar 

  • Engelund, E.T., Thygesen, L.G., Svensson, S., Hill, C.A.S.: A critical discussion of the physics of wood–water interactions. Wood Sci. Technol. 47, 141–161 (2013)

    Article  Google Scholar 

  • Frandsen, H.L., Damkilde, L., Svensson, S.: A revised multi-Fickian moisture transport model to describe non-Fickian effects in wood. Holzforschung 61, 563–572 (2007)

    Article  Google Scholar 

  • Huang, H.C., Tan, Y.C., Liu, C.W., Chen, C.H.: A novel hysteresis model in unsaturated soil. Hydrol. Process. 19(8), 1653–1665 (2005)

    Article  Google Scholar 

  • Iglesias, H.A., Chirife, J.: Handbook of Food Isotherms: Water Sorption Parameters for Food and Food Components. Academic Press Inc., London (1982)

    Google Scholar 

  • Johannesson, B., Nyman, U.: A numerical approach for non-linear moisture flow in porous materials with account to sorption hysteresis. Transp. Porous Med. 84, 735–754 (2010)

    Article  Google Scholar 

  • Kumaran, M.: Interlaboratory comparison of the ASTM Standard test methods for water vapor transmission of materials (E 96-95). J. Test. Eval. 26(2), 83–88 (1998)

    Article  Google Scholar 

  • Künzel, H.M.: Simultaneous Heat and Moisture Transport in Building Components—One- and Two-Dimensional Calculation Using Simple Parameters. Fraunhofer IRB Verlag, Stuttgart (1995). ISBN 3-8167-4103-7

    Google Scholar 

  • Maqara, M.A.: Ability of single-rate models to predict solute distribution coefficients in systems with heterogeneous sorption kinetics. Transp. Porous Med. 112, 765–781 (2016)

    Article  Google Scholar 

  • Mortensen, L.H., Rode, C., Peuhkuri, R.: Effect of Airflow Velocity on Moisture Exchange at Surfaces. BYG-DTU, Trondheim (2005)

    Google Scholar 

  • Nguyen K.-S.: Comportement thermos-chimique de matériaux minéraux: application à la protection incendie. Ph.D. thesis, LGCGM, Univ Rennes (2009)

  • Nyman, U., Gustafsson, P.J., Johannesson, B., Hägglund, R.: Numerical method for the evaluation of non-linear transient moisture flow in cellulosic materials. Int. J. Numer. Methods Eng. 66, 1859–1883 (2006)

    Article  Google Scholar 

  • Oumeziane, Y.A.: Evaluation des performances hygrothermiques d’une paroi par simulation numérique: application aux parois en béton de chanvre. Ph.D. thesis, Génie civil, INSA de Rennes (2013)

  • Oumeziane, Y.A., Bart, M., Moissette, S., Lanos, C.: Hysteretic behaviour and moisture buffering of hemp concrete. Transp. Porous Med. 103, 515–533 (2014)

    Article  Google Scholar 

  • Talev, G., Jelle, B.P., Næss, E., Gustavsen, A., Thue, J.V.: Measurement of the convective moisture transfer coefficient from porous building material surfaces applying a wind tunnel method. J. Build. Phys. 37(1), 103–121 (2012)

    Article  Google Scholar 

  • Van Genuchten, MTh: A closed-form equation for predicting the hydraulic conductivity of unsatured soils. Soil Sci. Soc. Am. J. 4, 892–898 (1980)

    Article  Google Scholar 

  • Zeng, Q., Zhang, D., Li, K.: Kinetics and equilibrium isotherms of water vapor adsorption/desorption in cement-based porous materials. Transp. Porous Med. 109, 469–493 (2015)

    Article  Google Scholar 

  • Zengh, Q., Xu, S.: A two-parameter stretched exponential function for dynamic water vapor sorption of cement-based porous materials. Mater. Struct. 50, 128 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been performed and funded in the framework of the European project ISOBIO—(http://isobioproject.com) within the scope the of the research and innovation program Horizon 2020 (Agreement No. 636835).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Reuge.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reuge, N., Moissette, S., Bart, M. et al. Water Transport in Bio-based Porous Materials: A Model of Local Kinetics of Sorption—Application to Three Hemp Concretes. Transp Porous Med 128, 821–836 (2019). https://doi.org/10.1007/s11242-019-01272-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-019-01272-4

Keywords

Navigation