Skip to main content
Log in

Phototropic bending of intact and wounded potato shoots

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Intact and wounded shoots of in vitro cultured potato were investigated in situ to determine how their phototropic (PT) bending capacity was affected by water availability and exogenous auxin supplementation. Wounding strongly decreased PT bending but it recovered upon supplementation of water, auxin or both. Intact shoots required neither water nor auxin, while shoot segments required both. Shoot cuttings required only water, while, like shoot segments, decapitated shoots had a strong requirement for auxin. Water supplementation was beneficial in all treatments and PT bending was not affected in cultures that were submerged in water for a short period. Sucrose and inorganic salts present in the medium strongly affected PT bending capacity of cultures, favouring combinations with lower concentrations of both. Sucrose alone strongly promoted PT bending up to a concentration of 5%. Osmotic shock induced by the addition of small volumes of highly concentrated carbohydrate solutions (sucrose, glucose or sorbitol) induced a rapid but transient decline in PT bending capacity. These results indicate that water availability is a major factor that affects PT bending in potato plantlets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Britz SJ, Galston AW (1983) Physiology of movements in stems of seedling Pisum sativum L. cv Alaska. III Phototropism in relation to gravitropism, nutation and growth. Plant Physiol 71:313–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruinsma J, Karssen CM, Benschop M, van Dort JB (1975) Hormonal regulation of phototropism in the light-grown sunflower seedling, Helianthus annuus L. Immobility of endogenous indoleacetic acid and inhibition of hypocotyl growth by illuminated cotyledons. J Exp Bot 26:411–418

    Article  CAS  Google Scholar 

  • Charfeddine S, Charfeddine M, Saïdi MN, Jbir R, Bouzid RG (2017) Potato dehydrins present high intrinsic disorder and are differentially expressed under ABA and abiotic stresses. Plant Cell Tiss Organ Cult 128:423–435

    Article  CAS  Google Scholar 

  • Chen R, Rosen E, Masson PH (1999) Gravitropism in higher plants. Plant Physiol 120:343–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christian M, Lüthen H (2000) New methods to analyse auxin-induced growth I: classical auxinology goes Arabidopsis. Plant Growth Regul 32:107–114

    Article  CAS  Google Scholar 

  • Christie JM, Murphy AS (2013) Shoot phototropism in higher plants: new lights through old concepts. Am J Bot 100:35–40

    Article  CAS  PubMed  Google Scholar 

  • Debergh P, Cohen D, Grout B, von Arnold S, Zimmerman R, Ziv M (1992) Reconsideration of the term ‘vitrification’ as used in micropropagation. Plant Cell Tiss Organ Cult 30:135–140

    Article  Google Scholar 

  • Edesi J, Kotkas K, Pirttilä AM, Häggman H (2014) Does light spectral quality affect survival and regeneration of potato (Solanum tuberosum L.) shoot tips after cryopreservation? Plant Cell Tissue Organ Cult 119:599–607

    Article  CAS  Google Scholar 

  • Evans ML (1991) Gravitropism: interaction of sensitivity modulation and effector redistibution. Plant Physiol 95:1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frensch J (1997) Primary responses of root and leaf elongation to water deficits in the atmosphere and soil solution. J Exp Bot 48:985–999

    CAS  Google Scholar 

  • Fukaki H, Fujisawa H, Tasaka M (1996a) Gravitropic response of inflorescence stems in Arabidopsis thaliana. Plant Physiol 110:933–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukaki H, Fujisawa H, Tasaka M (1996b) SGR1, SGR2, and SGR3: novel genetic loci involved in shoot gravitropism in Arabidopsis thaliana. Plant Physiol 110:945–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George EF, Hall MA, De Klerk G-J (2008) Plant propagation by tissue culture procedure – volume 1. The Background. Springer, Dordrecht

    Google Scholar 

  • Goyal A, Szarzynska B, Fankhauser C (2013) Phototropism: at the crossroads of light-signaling pathways. Trends Plant Sci 18:393–401

    Article  CAS  PubMed  Google Scholar 

  • Hager A (2003) Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. J Plant Res 116:483–505

    Article  CAS  PubMed  Google Scholar 

  • Hager A, Menzel H, Krauss A (1971) Versuche und hypothese zur Primärwirkung des Auxins beim Zellstreckungswachstum (experiments and hypothesis concerning the primary action of auxin in elongation growth). Planta 100:47–75

    Article  CAS  PubMed  Google Scholar 

  • Hussey G, Stacey NJ (1981) In vitro propagation of potato (Solanum tuberosum L.). Ann Bot 48:787–796

    Article  Google Scholar 

  • Iino M (1995) Gravitropism and phototropism of maize coleoptiles: evaluation of the Cholodny-Went theory through effects of auxin application and decapitation. Plant Cell Physiol 36:361–367

    Article  CAS  Google Scholar 

  • Kaldenhoff R, Iino M (1997) Restoration of phototropic responsiveness in decapitated maize coleoptiles. Plant Physiol 114:267–1272

    Article  Google Scholar 

  • Khurana JP, Best TR, Poff KL (1989) Influence of hook position on phototropic and gravitropic curvature by etiolated hypocotyls of Arabidopsis thaliana. Plant Physiol 90:376–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutschera U (1994) The current status of the acid-growth hypothesis. New Phytol 126:549–569

    Article  CAS  Google Scholar 

  • Kutschera U, Niklas KJ (2013) Cell division and turgor-driven stem elongation in juvenile plants: a synthesis. Plant Sci 207:45–56

    Article  CAS  PubMed  Google Scholar 

  • Lipavska H, Vreugdenhil D (1996) Uptake of mannitol from the media by in vitro grown plants. Plant Cell Tiss Org Cult 45:103–107

    Article  CAS  Google Scholar 

  • McCauley MM, Evert RF (1988) Morphology and vasculature of the leaf of potato (Solanum tuberosum). Am J Bot 75(3):377

    Article  Google Scholar 

  • McIntyre GI (1980) The role of water distribution in plant tropisms. Aust J Plant Physiol 7:401–413

    Article  Google Scholar 

  • McIntyre GI (2001) Control of plant development by limiting factors: a nutritional perspective. Physiol Plant 113:165–175

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nonami H, Boyer JS (1990) Primary events regulating stem growth at low water potentials. Plant Physiol 94:1601–1609

    Article  Google Scholar 

  • Pedmale UV, Celaya BR, Liscum E (2010) Phototropism: mechanisms and outcomes. Arabidopsis Book 8:e0125

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillip JR (1966) Plant water relations: some physical aspects. Ann Rev Plant Physiol 17:245–268

    Article  Google Scholar 

  • Preuten T, Hohm T, Bergmann S, Fankhauser C (2013) Defining the site of light perception and initiation of phototropism in Arabidopsis. Curr Biol 23:1934–1938

    Article  CAS  PubMed  Google Scholar 

  • Rayle DL, Cleland R (1970) Enhancement of wall loosening and elongation by acid solutions. Plant Physiol 46:250–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rayle DL, Cleland RE (1992) The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol 99:1271–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seabrook JEA (2005) Light effects on the growth and morphogenesis of potato (Solanum tuberosum) in vitro: a review. Am J Potato Res 82:353–367

    Article  Google Scholar 

  • Spalding EP (2013) Diverting the downhill flow of auxin to steer growth during tropisms. Am J Bot 100:203–214

    Article  CAS  PubMed  Google Scholar 

  • Vandenbrink JP, Kiss JZ, Herranz R, Medina FJ (2014) Light and gravity signals synergize in modulating plant development. Front Plant Sci 5:563

    Article  PubMed  PubMed Central  Google Scholar 

  • Velez-Ramirez AI, van Leperen W, Vreugdenhil D, Millenaar FF (2011) Plants under continuous light. Trends Plant Sci 16:310–318

    Article  CAS  PubMed  Google Scholar 

  • Venkatesh J, Yu J-W, Park SW (2013) Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins. Plant Physiol Biochem 73:392–404

    Article  CAS  PubMed  Google Scholar 

  • Vinterhalter D, Vinterhalter B (2015) Phototropic responses of potato under conditions of continuous light and subsequent darkness. Plant Growth Regul 75:725–732

    Article  CAS  Google Scholar 

  • Vinterhalter D, Vinterhalter B, Orbović V (2012) Photo- and gravitropic bending of potato plantlets obtained in vitro from single-node explants. J Plant Growth Regul 31:560–569

    Article  CAS  Google Scholar 

  • Vinterhalter D, Vinterhalter B, Miljuš-Djukić J, Jovanović Ž, Orbović V (2015) Daily changes in the competence for photo- and gravitropic response by potato plantlets. J Plant Growth Regul 34:440–450

    Article  CAS  Google Scholar 

  • Vinterhalter D, Savić J, Stanišić M, Jovanović Ž, Vinterhalter B (2016) Interaction with gravitropism, reversibility and lateral movements of phototropically stimulated potato shoots. J Plant Res 129:759–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whippo CW, Hangarter RP (2006) Phototropism: bending towards enlightenment. Plant Cell 18:1110–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, van Lammeren AAM, Vermeer E, Vreugdenhil D (1998) The role of gibberellin, abscisic acid and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol 117:575–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto K, Suzuki T, Aihara Y, Haga K, Sakai T, Nagatani A (2014) The phototropic response is locally regulated within the topmost light-responsive region of the Arabidopsis thaliana seedling. Plant Cell Physiol 55:497–506

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research was sponsored by the Serbian Ministry of Education, Science and Technological Development, Project No. 173015 and by a grant from Swiss National Science Foundation, SCOPES project 152221.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragan Vinterhalter.

Additional information

Communicated by Richard E. Veilleux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinterhalter, D., Vinterhalter, B. Phototropic bending of intact and wounded potato shoots. Plant Cell Tiss Organ Cult 130, 393–404 (2017). https://doi.org/10.1007/s11240-017-1235-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1235-2

Keywords

Navigation