Skip to main content
Log in

Anther culture for haploid and doubled haploid production

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Haploids are plants with a gametophytic chromosome number and doubled haploids are haploids that have undergone chromosome duplication. The production of haploids and doubled haploids (DHs) through gametic embryogenesis allows a single-step development of complete homozygous lines from heterozygous parents, shortening the time required to produce homozygous plants in comparison with the conventional breeding methods that employ several generations of selfing. The production of haploids and DHs provides a particularly attractive biotechnological tool, and the development of haploidy technology and protocols to produce homozygous plants has had a significant impact on agricultural systems. Nowadays, these biotechnologies represent an integral part of the breeding programmes of many agronomically important crops. There are several available methods to obtain haploids and DHs, of which in vitro anther or isolated microspore culture are the most effective and widely used. This review article deals with the current status of knowledge on the production of haploids and DHs through pollen embryogenesis and, in particular, anther culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achar PN (2002) A study of factors affecting embryo yields from anther culture of cabbage. Plant Cell Tissue Organ 69:183–188

    Google Scholar 

  • Aldemita RR, Zapata FJ (1991) Anther culture of rice: effects of radiation and media components on callus induction and plant regeneration. Cereal Res Commun 19:9–32

    Google Scholar 

  • Alemano L, Guiderdoni E (1994) Increased doubled haploid plant regeneration from rice (Oryza sativa L.) anther culture on colchicine-supplemented media. Plant Cell Rep 13:432–436

    Google Scholar 

  • Andersen SB (2005) Haploids in the improvement of woody species. In: Palmer CE, Keller WA, Kasha K (eds) Haploids in crop improvement II, vol 56. Springer, Heidelberg, pp 243–257

    Google Scholar 

  • Armstrong TA, Metz SG, Mascia PN (1987) Two regeneration system for the production of haploid plants from wheat anther culture. Plant Sci 51:231–237

    Google Scholar 

  • Ashok Kumar HG, Ravishankar BV, Murthy HN (2004) The influence of polyamines on androgenesis of Cucumis sativus L. Eur J Hortic Sci 69:201–205

    Google Scholar 

  • Atanassov A, Zagorska N, Boyadjiev P, Djilianov D (1995) In vitro production of haploid plants. World J Microbiol Biotechnol 11:400–408

    Google Scholar 

  • Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20:301–317

    CAS  PubMed  Google Scholar 

  • Bajaj YPS (1990) In vitro production of haploids and their use in cell genetics and plant breeding. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, part I. Haploids in crop improvement, vol 12. Springer, Berlin, pp 1–44

    Google Scholar 

  • Bajaj YPS, Reinert J, Heberle E (1977) Factors enhancing in vitro production of haploid plants in anther and isolated microspore cultures. In: Gautheret R (ed) La culture des tissue et des cellules des végétaux. Mason, Paris, pp 47–58

  • Ball ST, Zhou HP, Konzak CF (1993) Influence of 2, 4D, IAA and duration of callus induction in anther culture of spring wheat. Plant Sci 90:195–200

    CAS  Google Scholar 

  • Barnabas B, Phaler PL, Kovacs G (1991) Direct effect of colchicine on the microspore embryogenesis to produce dihaploid plants in wheat (Triticum aestivum L.). Theor Appl Genet 81:675–678

    CAS  Google Scholar 

  • Bhojwani SS, Razdan MK (1983) Plant tissue culture: theory and practice, vol 5. Elsevier, New York

  • Bhojwani SS, Dunwell JM, Sunderland N (1973) Nucleic acid and protein contents of embryogenic tobacco pollen. J Exp Bot 24:863–871

    CAS  Google Scholar 

  • Binarovà P, Hause G, Cenklova V, Cordewener JHG, Van Lookeren Campagne MM (1997) A short-severe heat shock is required to induce embryogenesis in late bicellular pollen of Brassica napus L. Sex Plant Reprod 10:200–208

    Google Scholar 

  • Bjørnstad Å, Opsahl-Ferstad HG, Aasmo M (1989) Effects of donor plant environment and light during incubation of anther cultures of some spring wheat (Triticum aestivum L.) cultivars. Plant Cell Tissue Organ 17:27–37

    Google Scholar 

  • Blakeslee AF, Belling J, Farnham ME, Bergner AD (1922) A haploid mutant in the Jimson weed, Datura stramonium. Science 55:646–647

    CAS  PubMed  Google Scholar 

  • Bohanec B (2003) Ploidy determination using flow cytometry. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer, Dordrecht, pp 397–403

    Google Scholar 

  • Bonet FJ, Azhaid L, Olmedilla A (1998) Pollen embryogenesis: atavism or totipotency? Protoplasma 202:115–121

    Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, Van Lammeren AA, Miki BL, Custers JB, Van Lookeren Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    CAS  PubMed  Google Scholar 

  • Bouvier L, Guérif P, Djulbic M, Durel CE, Chevreau E, Lespinasse Y (2002) Chromosome doubling of pear haploid plants and homozygosity assessment using isozyme and microsatellite markers. Euphytica 123:255–262

    CAS  Google Scholar 

  • Broughton S (2008) Ovary co-culture improves embryo and green plant production in anther culture of Australian spring wheat (Triticum aestivum L.). Plant Cell Tissue Organ 95:185–195

    Google Scholar 

  • Castillo AM, Cistue L, Valles MP, Sanz L, Romagosa I, Molina-Cano JL (2001) Efficient production of androgenic doubled-haploid mutants in barley by the application of sodium azide to anther and microspore cultures. Plant Cell Rep 20:105–111

    CAS  Google Scholar 

  • Castillo AM, Cistue L, Valles MP, Soriano M (2009) Chromosome doubling in monocots. In: Touraev A, Forster B, Jain M (eds) Advances in haploid production in higher plants. Springer, Heidelberg, pp 329–338

    Google Scholar 

  • Chen Z (1985) A study on induction of plants from Citrus pollen. Fruit Var J 39:44–50

    Google Scholar 

  • Chen CC, Kasha KJ, Marsolais A (1984) Segmentation patterns and mechanisms of genome multiplication in cultured microspores of barley. Can J Genet Cytol 26:475–483

    Google Scholar 

  • Chen QF, Wang CL, Lu YM, Shen M, Afza A, Duren MV, Brunner H (2001) Anther culture in connection with induced mutations for rice improvement. Euphytica 120:401–408

    Google Scholar 

  • Chiancone B, Tassoni A, Bagni N, Germanà MA (2006) Effect of polyamines on in vitro anther culture of Citrus clementina Hort. ex Tan. Plant Cell Tissue Organ 87:145–153

    CAS  Google Scholar 

  • Chu C (1978) The N6 medium and its applications to anther culture of cereal crops. In: Proc Symp Plant Tissue Culture. Science Press, Peking, pp 43–50

  • Chupeau Y, Caboche M, Henry Y (1998) Androgenesis and haploid plants. INRA/Springer, Berlin

    Google Scholar 

  • Cistué L, Valles MP, Echavarri B, Sanz JM, Castillo AM (2003) Barley anther culture. In: Maluszynsky M, Kasha KJ, Forster BP, Szaejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer/FAO-IAEA, Dordrecht/Vienna, pp 29–34

    Google Scholar 

  • Corduan G (1975) Regeneration of anther derived plants from anthers of Hyoscyamus niger. Planta (Berl) 127:27–36

    Google Scholar 

  • Deng XX, Deng ZA, Xiao SY, Zhang, WC (1992) Pollen derived plantlets from anther culture of Ichang papeda hybrids No. 14 and Trifoliate orange. In: Proc Int Soc Citriculture. Acireale, Italy, pp 190–192

  • D’Amato F (1977) Cytogenetics of differentiation in tissue and cell cultures. In: Reinert J, Bajaj YPS (eds) Applied and fundamental aspects of plant cell, tissue, and organ culture. Springer, Berlin, pp 343–356

    Google Scholar 

  • Datta SK (2005) Androgenic haploids: factors controlling development and its application in crop improvement. Curr Sci 89:1870–1878

    CAS  Google Scholar 

  • Dunwell JM (1979) Anther culture in Nicotiana tabacum: the role of the culture vessel atmosphere in pollen embryo induction and growth. J Exp Bot 30:419–428

    Google Scholar 

  • Dunwell JM (1981) Stimulation of pollen embryo induction in tobacco by pretreatment of excised anthers in a water-saturated atmosphere. Plant Sci Lett 21:9–13

    Google Scholar 

  • Dunwell JM (1985) Embryogenesis from pollen in vitro. In: Zaitlin P, Day P, Hollaender A (eds) Biotechnology in plant science. Academic Press, Orlando, pp 49–76

    Google Scholar 

  • Dunwell JM (1986) Pollen, ovule and embryo culture, as tools in plant breeding. In: Withers LA, Alderson PG (eds) Plant tissue culture and its agricultural applications. Butterworths, London, pp 375–404

    Google Scholar 

  • Dunwell JM (2009) Patents and haploid plants. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Heidelberg, pp 97–113

    Google Scholar 

  • Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424

    CAS  PubMed  Google Scholar 

  • Dunwell JM, Cornish M (1985) Influence of preculture variables on microspore embryo production in Brassica napus ssp. oleifera cv. Duplo. Ann Bot 56:281–289

    Google Scholar 

  • Dunwell JM, Sunderland N (1974a) Pollen ultrastructure in anther cultures of Nicotiana tabacum. I. Early stages of culture. J Exp Bot 25:352–361

    Google Scholar 

  • Dunwell JM, Sunderland N (1974b) Pollen ultrastructure in anther cultures of Nicotiana tabacum. II. Changes associated with embryogenesis. J Exp Bot 25:363–373

    Google Scholar 

  • Dunwell JM, Sunderland N (1975) Pollen ultrastructure in anther cultures of Nicotiana tabacum. III. The first sporophytic division. J Exp Bot 26:240–252

    Google Scholar 

  • Dunwell JM, Sunderland N (1976a) Pollen ultrastructure in anther cultures of Datura innoxia. I. Division of the presumptive vegetative cell. J Cell Sci 22:469–480

    CAS  PubMed  Google Scholar 

  • Dunwell JM, Sunderland N (1976b) Pollen ultrastructure in anther cultures of Datura innoxia. II. The generative cell wall. J Cell Sci 22:481–492

    CAS  PubMed  Google Scholar 

  • Dunwell JM, Sunderland N (1976c) Pollen ultrastructure in anther cultures of Datura innoxia. III. Incomplete microspore division. J Cell Sci 22:493–502

    CAS  PubMed  Google Scholar 

  • Dunwell JM, Thurling N (1985) Role of sucrose in microspore embryo production in Brassica napus ssp. oleifera. J Exp Bot 36:1478–1491

    CAS  Google Scholar 

  • Dunwell JM, Cornish M, De Courcel AGL, Middlefell-Williams JE (1983) Induction and growth of ‘microspore-derived’ embryos of Brassica napus ssp. oleifera. J Exp Bot 34(12):1768–1778

    Google Scholar 

  • Evans DA, Sharp WR, Medina-Filho HP (1984) Somaclonal and gametoclonal variation. Am J Bot 71:759–774

    Google Scholar 

  • Ferrie AMR (2009) Current status of doubled haploids in medicinal plants. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Heidelberg, pp 209–217

    Google Scholar 

  • Foroughi-Wehr B, Mix G (1976) In vitro responses of Hordeum vulgare L. anthers cultured from plants grown under different environments. Environ Exp Bot 19:303–309

    Google Scholar 

  • Foroughi-Wehr B, Friedt W, Wenzel G (1982) On the genetic improvement of androgenetic haploid formation in Hordeum vulgare L. Theor Appl Genet 62:246–248

    Google Scholar 

  • Forster BP, Thomas WTB (2005) Doubled haploids in genetics and plant breeding. Plant Breed Rev 25:57–88

    CAS  Google Scholar 

  • Forster BP, Herberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12(8):368–375

    CAS  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirement suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    CAS  PubMed  Google Scholar 

  • Germanà MA (1997) Haploidy in Citrus. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 5. Kluwer, Dordrecht, pp 195–217

    Google Scholar 

  • Germanà MA (2003) Haploids and doubled haploids in Citrus spp. In: Maluszynsky M, Kasha KJ, Forster BP, Szaejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer/FAO-IAEA, Dordrecht/Vienna, pp 303–308

    Google Scholar 

  • Germanà MA (2005) Protocol of somatic embryogenesis from Citrus spp. anther culture. In Jain SM, Gupta PK (eds) Protocol of somatic embryogenesis-woody plants. Kluwer, Dordrecht, pp 191–207

  • Germanà MA (2006) Doubled haploid production in fruit crops. Plant Cell Tissue Organ 86:131–146

    Google Scholar 

  • Germanà MA (2007) Haploidy. In: Khan I (ed) Citrus. Genetics, breeding and biotechnology. CABI, Wallingford, pp 167–196

    Google Scholar 

  • Germanà MA (2009) Haploid and doubled haploids in fruit trees. In: Touraev A, Forster B, Jain M (eds) Advances in haploid production in higher plants. Springer, Heidelberg, pp 241–263

    Google Scholar 

  • Germanà MA, Chiancone B (2003) Improvement of the anther culture protocol in Citrus clementina Hort. ex Tan. Plant Cell Rep 22:181–187

    PubMed  Google Scholar 

  • Germanà MA, Reforgiato G (1997) Haploid embryos regeneration from anther culture of ‘Mapo’ tangelo (Citrus deliciosa × C. paradisi). Adv Hortic Sci 11:147–152

    Google Scholar 

  • Germanà MA, Crescimanno FG, De Pasquale F, Wang YY (1991) Androgenesis in 5 cultivars of Citrus limon L. Burm. f. Acta Hortic 300:315–324

    Google Scholar 

  • Germanà MA, Wang YY, Barbagallo MG, Iannolino G, Crescimanno FG (1994) Recovery of haploid and diploid plantlets from anther culture of Citrus clementina Hort. ex Tan. and Citrus reticulata Blanco. J Hortic Sci 69(3):473–480

    Google Scholar 

  • Germanà MA, Crescimanno FG, Motisi A (2000a) Factors affecting androgenesis in Citrus clementina Hort. ex Tan. Adv Hortic Sci 14:43–51

    Google Scholar 

  • Germanà MA, Crescimanno FG, Reforgiato G, Russo MP (2000b) Preliminary characterization of several doubled haploids of Citrus clementina cv. Nules. In: Goren R, Goldschmidt EE (eds) Proc 1st Int Symp Citrus Biotechnology. Eilat, Israel, Acta Hortic 535:183–190

  • Germanà MA, Chiancone B, Lain O, Testolin R (2005a) Anther culture in Citrus clementina: a way to regenerate tri-haploids. Aust J Agric Res 56:839–845

    Google Scholar 

  • Germanà MA, Chiancone B, Iaconia C, Muleo R (2005b) The effect of light quality on anther culture of Citrus clementina Hort. ex Tan. Acta Physiol Plant 27(4B):717–721

    Google Scholar 

  • Gervais C, Newcomb W, Simmonds DH (2000) Rearrangement of the actin filament and microtubule cytoskeleton during induction of microspore embryogenesis in Brasssica napus L. cv. Topas. Protoplasma 213:194–202

    Google Scholar 

  • Gonzalez-Melendi P, Ramırez C, Testillano PS, Kumlehn J, Risueno MC (2005) Three dimensional confocal and electron microscopy imaging define the dynamics and mechanisms of diploidisation at early stages of barley microspore-derived embryogenesis. Planta 222:47–57

    CAS  PubMed  Google Scholar 

  • Grewal RK, Lulsdorf M, Croser J, Ochatt S, Vandenberg A, Warkentin TD (2009) Doubled-haploid production in chickpea (Cicer arietinum L.): role of stress treatments. Plant Cell Rep 28:1289–1299

    CAS  PubMed  Google Scholar 

  • Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497–498

    Google Scholar 

  • Hause B, van Veenendaal WLH, Hause G, van Lammeren AAM (1994) Expression of polarity during early development of microsporederived and zygotic embryos of Brassica napus L. cv. Topas. Bot Acta 107:407–415

    Google Scholar 

  • Heberle-Bors E (1982) In vitro pollen embryogenesis in Nicotiana tabacum L. and its relation to pollen sterility, sex balance and floral induction of the pollen donor plants. Planta 156:396–401

    Google Scholar 

  • Heberle-Bors E (1983) Induction of embryogenic pollen grains and subsequent embryogenesis in Nicotiana tabacum L. by treatments of the pollen donor plants with feminizing agents. Physiol Plantarum 59:67–72

    CAS  Google Scholar 

  • Heberle-Bors E (1985) In vitro haploid formation from pollen: a critical review. Theor Appl Genet 71:361–374

    Google Scholar 

  • Heberle-Bors E (1989) Isolated pollen culture in tobacco: plant reproductive development in a nutshell. Sex Plant Reprod 2:1–10

    Google Scholar 

  • Heberle-Bors E, Reinert J (1981) Environmental control and evidence for predetermination of pollen embryogenesis in Nicotiana tabacum pollen. Protoplasma 109:249–255

    Google Scholar 

  • Hidaka T, Yamada Y, Shichijo T (1979) In vitro differentiation of haploid plants by anther culture in Poncirus trifoliata (L.) Raf. Jpn J Breed 29:248–254

    Google Scholar 

  • Hidaka T, Yamada Y, Shichijo T (1981) Plantlet formation from anthers of Citrus aurantium L.. Proc Int Soc Citriculture 1:153–155

    Google Scholar 

  • Ho KM, Jones GE (1980) Mingo barley. Can J Plant Sci 60:279–280

    Google Scholar 

  • Hochholdinger F, Hoecker N (2007) Towards the molecular basis of heterosis. Trends Plant Sci 12:427–432

    CAS  PubMed  Google Scholar 

  • Hoekstra S, van Zijderveld MH, Louwerse JD, Heidekamp F, van der Mark F (1992) Anther and microspore culture of Hordeum vulgare L. cv Igri. Plant Sci 86:89–96

    CAS  Google Scholar 

  • Höfer M (1994) In vitro Androgenesis in apple: induction, regeneration and ploidy level. In: Schmidt H, Kellerhals M (eds) Progress in temperate fruit breeding. Kluwer, Dordrecht, pp 193–197

    Google Scholar 

  • Höfer M, Grafe C (2000) Preliminary evaluation of doubled haploid-material in apple. Acta Hortic 538:587–592

    Google Scholar 

  • Höfer M, Gomez A, Aguiriano E, Manzanera JA, Bueno MA (2002) Analysis of simple sequence repeat markers in homozygous lines in apple. Plant Breed 121:159–162

    Google Scholar 

  • Hosp J, Maraschin SF, Touraev A, Boutilier K (2007) Functional genomics of microspore embryogenesis. Euphytica 158:275–285

    Google Scholar 

  • Hu H, Yang HY (eds) (1986) Haploids in higher plants in vitro. China Academic Publishers/Springer, Beijing/Berlin

    Google Scholar 

  • Hu G, Liang GH, Wassom CE (1991) Chemical induction of apomictic seed formation in maize. Euphytica 56:97–105

    CAS  Google Scholar 

  • Huang B (1992) Genetic manipulation of microspores and microspore-derived embryos. In Vitro Cell Dev Biol 28:53–58

    Google Scholar 

  • Huang B (1996) Gametoclonal variation in crop improvement. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 2. Kluwer, Dordrecht, pp 73–91

    Google Scholar 

  • Immonen S, Anttila H (1996) Success in rye anther culture. Votr Pflanzenzuchtg 35:237–244

    Google Scholar 

  • Immonen S, Robinson J (2000) Stress treatments and ficoll for improving green plant regeneration in triticale anther culture. Plant Sci 150:77–84

    CAS  Google Scholar 

  • Jacquard C, Wojnarowiez G, Clément C (2003) Anther culture in barley. In: Maluszynsky M, Kasha KJ, Forster BP, Szaejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer/FAO-IAEA, Dordrecht/Vienna, pp 21–27

    Google Scholar 

  • Jain SM, Sopory SK, Veilleux RE (eds) (1996–1997) In vitro haploid production in higher plants, vol 1–5. Kluwer, Dordrecht

  • Kadota M, Niimi Y (2004) Production of triploid plants of Japanese pear (Pyrus pyrifolia Nakai) by anther culture. Euphytica 138:141–147

    Google Scholar 

  • Kasha KJ (ed) (1974) Haploids in higher plants: advances and potential. The Office of Continuing Education, University of Guelph Press, Guelph

    Google Scholar 

  • Kasha KJ (2005) Chromosome doubling and recovery of doubled haploid plants. In: Palmer CE, Keller WA, Kasha KJ (eds) Haploids in crop improvement II, vol 56. Springer, Heidelberg, pp 123–152

    Google Scholar 

  • Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874–876

    CAS  PubMed  Google Scholar 

  • Kasha KJ, Maluszynsky M (2003) Production of doubled haploids in crop plants. An introduction. In: Maluszynsky M, Kasha KJ, Forster BP, Szaejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer/FAO-IAEA, Dordrecht/Vienna, pp 1–4

    Google Scholar 

  • Kasha KJ, Hu TC, Oro R, Simion E, Shim YS (2001) Nuclear fusion leads to chromosome doubling during mannitol pretreatment of barley (Hordeum vulgare L.) microspores. J Exp Bot 52(359):1227–1238

    CAS  PubMed  Google Scholar 

  • Keller WA, Stringham GR (1978) Production and utilization of microspore derived plants. In: Thorpe TA (ed) Frontiers of plant tissue culture. Calgary University Press, Calgary, pp 113–122

    Google Scholar 

  • Keller WA, Rajhathy T, Lacapra J (1975) In vitro production of plants from pollen in Brassica campestris. Can J Genet Cytol 17:655–666

    CAS  Google Scholar 

  • Keller WA, Armstrong KC, De La Roche AI (1983) The production and utilization of microspore-derived haploids in Brassica crops. In: Sen SK, Giles KL (eds) Plant cell culture in crop improvement. Plenum Press, New York, pp 169–183

    Google Scholar 

  • Kenis K, Keulemans J (2000) The use of microsatellites to investigate the homozygous status of apple plants obtained by anther culture and parthenogenesis in situ. Acta Hortic 538:581–585

    CAS  Google Scholar 

  • Khush GS, Virmani SS (1996) Haploids in plant breeding. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 1. Kluwer, Dordrecht, pp 11–33

    Google Scholar 

  • Kopecky D, Vagera J (2005) The use of mutagens to increase the efficiency of the androgenic progeny production in Solanum nigrum. Biol Plant 49:181–186

    Google Scholar 

  • Kott L (1998) Application of doubled haploid technology in breeding of oilseed Brassica napus. AgBiotech News Inf 10:69N–74N

    Google Scholar 

  • Krämer U, Pickering IJ, Prince RG, Raskin I, Salt DE (2000) Subcellular localization and speciation of Nickel in Hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353

    PubMed  Google Scholar 

  • Kumar A, Altabella T, Taylor MA, Tiburcio AF (1997) Recent advances in polyamine research. Trends in Plant Sci 2(4):124–130

    Google Scholar 

  • Kunzel G, Korzuna L, Meistera A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412

    CAS  PubMed  Google Scholar 

  • Kupper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    CAS  PubMed  Google Scholar 

  • Kyo M, Harada H (1986) Control of the developmental pathway of tobacco pollen in vitro. Planta 168:427–432

    CAS  Google Scholar 

  • Lazar MD, Schaeffer GW, Baenziger PS (1984) Cultivar and cultivar x environment effects on the development of callus and polyhaploid plants from anther cultures of wheat. Theor Appl Genet 67:273–277

    Google Scholar 

  • Lee LP, Hecht A (1975) Chloroplasts of monoploid and diploid Oenothera hookeri. Am J Bot 62:268–272

    Google Scholar 

  • Lee JH, Lee SY (2002) Selection of stable mutants from cultured rice anthers treated with ethyl methane sulfonic acid. Plant Cell Tissue Organ 71:165–171

    CAS  Google Scholar 

  • Letarte J, Simion E, Miner M, Kasha KJ (2006) Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture. Plant Cell Rep 24:691–698

    CAS  PubMed  Google Scholar 

  • Levan A (1945) A haploid sugar beet after colchicine treatment. Hereditas 31:399–410

    CAS  PubMed  Google Scholar 

  • Liang GH, Xu A, Tang H (1987) Direct generation of wheat haploids via anther culture. Crop Sci 27:336–339

    Google Scholar 

  • Magoon ML, Khanna KR (1963) Haploids. Caryologia 16:191–234

    Google Scholar 

  • Maheshwari SC, Rashid A, Tyagy AK (1982) Haploid from pollen grains-retrospect and prospect. Am J Bot 69:865–879

    Google Scholar 

  • Malik MR, Wang F, Dirpaul JM, Zhou N, Polowick PL, Ferrie AMR, Krochko JE (2007) Transcript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus. Plant Physiol 144:134–154

    CAS  PubMed  Google Scholar 

  • Maluszynski M, Szarejko I, Barriga P, Balcerzyk A (2001) Heterosis in crop mutant crosses and production of high yielding lines using doubled haploid systems. Euphytica 120:387–398

    Google Scholar 

  • Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) (2003a) Doubled haploid production in crop plants: a manual. Kluwer, Dordrecht

    Google Scholar 

  • Maluszynski M, Kasha KJ, Szarejko I (2003b) Published double haploid protocols in plant species. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Haploid production in crop plants: a manual. Kluwer, Dordrecht, pp 309–335

    Google Scholar 

  • Maraschin SD, Lamers GEM, de Pater BS, Spaink HP, Wang M (2003) 14-3-3 isoforms and pattern formation during barley microspore embryogenesis. J Exp Bot 54:1033–1104

    CAS  Google Scholar 

  • Maraschin SF, de Priester W, Spaink HP, Wang M (2005a) Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56(417):1711–1726

    CAS  PubMed  Google Scholar 

  • Maraschin SF, Gaussand G, Olmedilla A, Pulido A, Lamers GEM, Korthout H, Spaink HP, Wang M (2005b) Programmed cell death during the transition from multicellular structures into globular embryos in barley androgenesis. Planta 221:459–470

    Google Scholar 

  • Martin B, Widholm JM (1996) Ploidy of small individual embryo-like structures from maize anther cultures treated with chromosome doubling agents and calli derived from them. Plant Cell Rep 15(10):781–785

    CAS  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457

    CAS  PubMed  Google Scholar 

  • Misoo S, Yokota F, Matsubayashi M (1981) Effects of inoculation-ways of anthers on the pollen mitosis and plantlet formation in tobacco anther culture. Rep Soc Crop Sci Breed Kinki 26:44–48

    Google Scholar 

  • Mollers C, Iqbal MCM, Roblen G (1994) Efficient production of doubled haploid Brassica napus plants by colchicine treatment of microspores. Euphytica 75:95–104

    Google Scholar 

  • Morrison RA, Evans DA (1987) Gametoclonal variation. Plant Breed Rev 5:359–391

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    CAS  Google Scholar 

  • Narayanaswamy S, George L (1982) Anther culture. In: Johri BM (ed) Experimental embryology of vascular plants. Springer, Berlin, pp 79–103

    Google Scholar 

  • Nitsch C (1977) Culture of isolate microspore. In: Reinert J, Bajaj YPS (eds) Applied and fundamental aspects of plant cell, tissue and organ culture. Springer, Berlin, pp 268–278

    Google Scholar 

  • Nitsch C (1981) Production of isogenic lines: basic technical aspects of androgenesis. In: Thorpe TA (ed) Plant tissue culture methods and applications in agriculture. Academic Press, New York, pp 241–252

    Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    CAS  PubMed  Google Scholar 

  • Nitsch C, Norreel B (1973) Effet d’un choc thermique sur le pouvoir embryogène du pollen de Datura innoxia cultivé dans l’anthère ou isolé de l’anthère. C R Acad Sci Paris 276D:303–306

    Google Scholar 

  • Nitzche W (1970) Herstellung haploider Pflanzen aus Festuca-Lolium Bastarden. Naturwissenschaft 57:199–200

    Google Scholar 

  • Obert B, Barnabás B (2004) Colchicine induced embryogenesis in maize. Plant Cell Tissue Organ 77:283–285

    CAS  Google Scholar 

  • Osolnik B, Bohanec B, Jelaska S (1993) Stimulation of androgenesis in white cabbage (Brassica oleracea var. capitata) anthers by low temperature and anther dissection. Plant Cell Tissue Organ 32:241–246

    Google Scholar 

  • Palmer CE, Keller WA, Kasha KJ (eds) (2005) Haploids in crop improvement II. Springer, Heidelberg, Germany, vol 56

  • Pelletier G, Ilami M (1972) Les facteurs de l’androgenese in vitro chez Nicotiana tabacum. Z Pflanzenphysiol 68:97–114

    Google Scholar 

  • Perry JA, Wang TL, Welham TJ, Gardner S, Pike JM, Yoshida S, Parniske M (2003) A TILLING reverse genetics tool and a Web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol 131:866–871

    CAS  PubMed  Google Scholar 

  • Petolino JF, Thompson SA (1987) Genetic analysis of anther culture response in maize. Theor Appl Genet 74:284–286

    Google Scholar 

  • Pintos B, Manzanera JA, Bueno MA (2007) Antimitotic agents increase the production of doubled-haploid embryos from cork oak anther culture. J Plant Physiol 164:1595–1604

    CAS  PubMed  Google Scholar 

  • Powell W (1988) The influence of genotype and temperature pre-treatment on anther culture response in barley (Hordeum vulgare L.). Plant Cell Tissue Organ 12:291–297

    Google Scholar 

  • Powell W (1990) Environmental and genetic aspects of pollen embryogenesis. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, part I. Haploids in crop improvement, vol 12. Springer, Berlin, pp 44–65

    Google Scholar 

  • Pratap A, Gupta SK, Takahata Y (2009) Microsporogenesis and haploidy breeding. In: Gupta SK (ed) Biology and breeding of crucifers. CRC Press, Boca Raton, pp 293–307

    Google Scholar 

  • Pulido A, Bakos F, Castillo A, Vallés MP, Barnabas B, Olmedilla A (2005) Cytological and ultrastructural changes induced in anther and isolated-microspore cultures in barley: Fe deposits in isolated-microspore cultures. J Struct Biol 149:170–181

    CAS  PubMed  Google Scholar 

  • Qin X, Rotino GL (1995) Chloroplast number in guard cells as ploidy indicator of in vitro-grown androgenic pepper plantlets. Plant Cell Tissue Organ 41:145–149

    Google Scholar 

  • Raghavan V (1990) From microspore to embryo: faces of the angiosperm pollen grain. In: Nijkamp HJJ, van der Plas LH, van Hartrigik J (eds) Progress in plant cellular and molecular biology. I.A.P.T.C. Kluwer, Dordrecht, pp 213–221

    Google Scholar 

  • Raghavan V (1997) Molecular embryology of flowering plants. Cambridge University Press, New York

    Google Scholar 

  • Rahman MH, Krishnaraj S, Thorpe TA (1995) Selection for salt tolerance in vitro using microspore-derived embryos of Brassica napus cv Topas, and the characterization of putative tolerant plants. In Vitro Cell Dev Biol Plant 31:116–121

    Google Scholar 

  • Rajyalakshmi K, Chowdhry CN, Maheshwari N, Maheshwari SC (1995) Anther culture response in some Indian wheat cultivars and the role of polyamines in induction of haploids. Phytomorphology 45:139–145

    Google Scholar 

  • Raquin C (1983) Utilization of different sugars of carbon sources for in vitro anther culture of Petunia. Z Pflanzenzucht 453–457

  • Raquin C, Pilet V (1972) Production de plantes a partir d’antheres de Petuniaa cultiveés in vitro. Compt Rend D 274:1019–1022

    Google Scholar 

  • Reinert J, Bajaj YPS (1977) Anther culture: haploid production and its significance. In: Reinert J, Bajaj YPS (eds) Applied and fundamental aspects of plant cell, tissue and organ culture. Springer, Berlin, pp 251–267

    Google Scholar 

  • Reynolds TL (1997) Pollen embryogenesis. Plant Mol Biol 33:1–10

    CAS  PubMed  Google Scholar 

  • Reynolds TL, Crawford RL (1997) Effects of light on the accumulation of abscisic acid and expression of an early cysteine-labeled metallothionein gene in microspores of Triticum aestivum during induced embryogenic development. Plant Cell Rep 16(7):458–463

    CAS  Google Scholar 

  • Rihova L, Tupy J (1999) Manipulation of division symmetry and developmental fate in cultures of potato microspores. Plant Cell Tissue Organ 59:135–145

    Google Scholar 

  • Rudolf K, Bohanec B, Hansen M (1999) Microspore culture of white cabbage, Brassica oleracea var. capitata L.: genetic improvement of non-responsive cultivars and effect of genome doubling agents. Plant Breed 118:237–241

    CAS  Google Scholar 

  • Sanders ME, Franzke CJ (1962) Somatic reduction of tetraploid sorghum to diploid mutants following colchicine treatment. Nature 196:696–698

    Google Scholar 

  • Sangwan RS, Sangwan-Norreel BS (1990) Anther and pollen culture. In: Bhajwari SS (ed) Plant tissue culture. Applications and limitations. Elsevier, Amsterdam, pp 220–241

    Google Scholar 

  • Sangwan-Norreel BS (1983) Male gametophyte nuclear DNA content evolution during androgenic induction in Datura innoxia. Z Pflanzenphysiol 111:47–54

    CAS  Google Scholar 

  • Sangwan-Norreel BS, Sangwan RS, Pare J (1986) Haploïdie et embryogenèse provoquée in vitro. Bull Society of Botany Fr 133. Actual Bot 4:7–39

    Google Scholar 

  • Seguí-Simarro JM (2010) Androgenesis revisited. Bot Rev 76:377–404

    Google Scholar 

  • Seguì-Simarro JM, Nuez F (2008a) How microspores transform into haploid embryos: changes associated with embryogenesis induction and microsporederived embryogenesis. Physiol Plant 134:1–12

    PubMed  Google Scholar 

  • Seguì-Simarro JM, Nuez F (2008b) Pathways to doubled haploidy: chromosome doubling during androgenesis. Cytogenet Genome Res 120:358–369

    PubMed  Google Scholar 

  • Shannon PRM, Nicholson AE, Dunwell JM, Davies DR (1985) Effect of anther orientation on microspore-callus production in barley (Hordeum vulgare). Plant Cell Tissue Organ 4:271–280

    Google Scholar 

  • Shariatpanahi ME, Bal U, Heberle-Bors E, Touraev A (2006) Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiol Plant 127:519–534

    CAS  Google Scholar 

  • Sharma AK, Sharma A (1972) Chromosome techniques. Butterworths/University Park Press, London/Baltimore

    Google Scholar 

  • Shim YS, Kasha KJ, Simion E, Letarte J (2006) The relationship between induction of embryogenesis and chromosome doubling in microspore cultures. Protoplasma 228:79–86

    CAS  PubMed  Google Scholar 

  • Shull JK, Menzel MY (1977) A study of the reliability of synchrony in the development of pollen mother cells of Lilium longiflorum at the first meiotic prophase. Am J Bot 6 4:670–679

    Google Scholar 

  • Simantel GM, Ross JG (1964) Colchicine-induced somatic chromosome reduction in sorghum: IV. An induced haploid mutant. J Hered 55:3–5

    CAS  PubMed  Google Scholar 

  • Skrzypek E, Czyczyło-Mysza I, Marcinska I, Wedzony M (2008) Prospects of androgenetic induction in Lupinus spp. Plant Cell Tissue Organ 94:131–137

    Google Scholar 

  • Smykal P (2000) Pollen embryogenesis—the stress mediated switch from gametophytic to sporophytic development. Current status and future prospects. Biol Plant 43:481–489

    CAS  Google Scholar 

  • Sopory SK, Maheshwari SC (1976) Development of pollen embryoids in anther culture of Datura innoxia. I. General observations and effects of physical factors. J Exp Bot 27:49–57

    Google Scholar 

  • Sopory S, Munshi M (1996) Anther culture. In: Mohan JM et al (eds) In vitro haploid production in higher plants, vol 1. Kluwer, Dordrecht, pp 145–176

    Google Scholar 

  • Srivastava P, Chaturvedi R (2008) In vitro androgenesis in tree species: an update and prospect for further research. Biotechnol Adv 26:482–491

    CAS  PubMed  Google Scholar 

  • Stuart DA, Strickland SG, Walker KA (1987) Bioreactor production of alfalfa somatic embryos. Hortscience 22:800–809

    Google Scholar 

  • Sunderland N (1971) Anther culture: a progress report. Sci Prog (Oxford) 59:527–549

    Google Scholar 

  • Sunderland N (1974) Anther culture as means of haploid induction. In: Kasha KJ (ed) Haploids in higher plants. Advances and potential. University of Guelph Press, Guelph, pp 91–122

    Google Scholar 

  • Sunderland N (1978) Strategies in the improvement of yields in anther culture. In: Proc Symp Plant Tissue Culture. Science Press, Peking, pp 65–86

  • Sunderland N, Dunwell JM (1972) Conditions for embryoid formation in Nicotiana pollen. Ann Rep John Innes Inst 62:60–61

    Google Scholar 

  • Sunderland N, Dunwell JM (1977) Anther and pollen culture. In: Street HE (ed) Plant tissue and cell culture. Oxford, Blackwell, pp 223–265

    Google Scholar 

  • Supena EDJ, Suharsono S, Jacobsen E, Custers JBM (2006) Successful development of a shed-microspore culture protocol for doubled haploid production in Indonesian hot pepper (Capsicum annuum L.). Plant Cell Rep 25:1–10

    CAS  PubMed  Google Scholar 

  • Szarejko I, Forster BP (2006) Doubled haploidy and induced mutation. Euphytica 158:359–370

    Google Scholar 

  • Szarejko I, Forster BP (2007) Doubled haploidy and induced mutation. Euphytica 158(3):359–370

    Google Scholar 

  • Telmer CA, Newcom W, Simmonds DH (1992) Determination of developmental stage to obtain high frequencies of embryogenic microspores in Brassica napus. Physiol Plant 84:417–424

    Google Scholar 

  • Telmer CA, Newcomb W, Simmonds DH (1995) Cellular changes during heat shock induction and embryo development of cultured microspores of Brassica napus cv. Topas. Protoplasma 185:106–112

    Google Scholar 

  • Testillano PS, Coronado MJ, Seguì-Simarro JM, Domenech J, Gonzalez-Melendi P, Raska I, Risueno MC (2000) Defined nuclear changes accompany the reprogramming of the microspore to embryogenesis. J Struct Biol 129:223–232

    CAS  PubMed  Google Scholar 

  • Thompson KF (1972) Oil-seed rape. In: Reports of the Plant Breeding Institute. Cambridge University Press, Cambridge, pp 94–96

  • Tiainen T (1992) The role of ethylene and reducing agents on anther culture response of tetraploid potato (Solanum tuberosum L.). Plant Cell Rep 10:604–607

    CAS  Google Scholar 

  • Toojinda T, Baird E, Booth A, Broers L, Hayes P, Powell W, Thomas W, Vivar H, Young G (1998) Introgression of quantitative trait loci (QTLs) determining stripe rust resistance in barley: an example of marker-assisted development. Theor Appl Genet 96:123–131

    CAS  Google Scholar 

  • Touraev A, Ilham A, Vicente O, Heberle-Bors E (1996a) Stress induced microspore embryogenesis from tobacco microspores: an optimized system for molecular studies. Plant Cell Rep 15:561–565

    CAS  Google Scholar 

  • Touraev A, Indrianto A, Wratschko I, Vicente O, Heberle-Bors E (1996b) Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperatures. Sex Plant Reprod 9:209–215

    Google Scholar 

  • Touraev A, Vicente O, Heberle-Bors E (1997) Initiation of microspore embryogenesis by stress. Trends Plant Sci 2:297–302

    Google Scholar 

  • Touraev A, Pfosser M, Heberle-Bors E (2001) The microspore: a haploid multipurpose cell. Adv Bot Res 35:53–109

    Google Scholar 

  • Touraev A, Forster BP, Jain SM (eds) (2009) Advances in haploid production in higher plants. Springer, Berlin

    Google Scholar 

  • Tsay H-S (1981) Effects of nitrogen supply to donor plants on pollen embryogenesis in cultured tobacco anthers. J Agric Res China 30:5–13

    Google Scholar 

  • Turner J, Facciotti D (1990) High oleic acid Brassica napus from mutagenized microspores. In: McFerson JR, Kresovich S, Dwyer SG (eds) Proc 6th Crucifer Genet Workshop. Geneva, pp 24

  • Tuvesson S, Dayteg C, Hagberg P, Manninen O, Tanhuanpa P, Tenhola-Roininen T, Kiviharju E, Weyen J, Forster J, Schondelmaier J, Lafferty J, Marn M, Fleck A (2006) Molecular markers and doubled haploids in European plant breeding programmes. Euphytica 158:305–312

    Google Scholar 

  • Vagera J, Novotny J, Ohnoutkova L (2004) Induced androgenesis in vitro in mutated populations of barley, Hordeum vulgare. Plant Cell Tissue Organ 77:55–61

    CAS  Google Scholar 

  • Vasil IK (1967) Physiology and cytology of anther development. Biol Rev 42:327–373

    CAS  PubMed  Google Scholar 

  • Vasil IK (1973) Plants: haploid tissue cultures. In: Kruse PF Jr, Patterson MK Jr (eds) Tissue cultures methods and application. Academic Press, New York, pp 157–161

    Google Scholar 

  • Vasil IK (1980) Androgenic haploids. Int Rev Cytol Suppl 11A:195–223

    Google Scholar 

  • Veilleux RE (1994) Development of new cultivars via anther culture. Hortscience 29(11):1238–1241

    Google Scholar 

  • Verdoodt L, Van Haute A, Goderis IJ, De Witte K, Keulemans J, Broothaerts W (1998) Use of the multi-allelic self-incompatibility gene in apple to assess homozygosity in shoots obtained through haploid induction. Theor Appl Genet 96:294–300

    CAS  Google Scholar 

  • Wang M, van Bergen S, Van Duijn B (2000) Insights into a key developmental switch and its importance for efficient plant breeding. Plant Physiol 124:523–530

    CAS  PubMed  Google Scholar 

  • Wang Z, Taramino G, Yong D, Liu G, Tingey SV, Miao G-L, Wang G-L (2001) Rice ESTs with disease-resistance gene or defense-response gene-like sequences mapped to regions containing major resistance genes or QTLs. Mol Gen Genome 265:302–310

    CAS  Google Scholar 

  • Wedzony M, Forster BP, Zur I, Golemiec E, Szechynska-Hebda M, Dubas, Gotebiowska G (2009) Progress in doubled haploid technology in higher plants. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Berlin, pp 1–34

    Google Scholar 

  • Wenzel G, Foroughi-Wehr B (1984) Anther culture of cereals and grasses. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants I. Academic Press, New York, pp 311–327

    Google Scholar 

  • Wenzel G, Hoffmann F, Thomas E (1977) Increased induction and chromosome doubling of androgenetic haploid rye. Theor Appl Genet 51:81–86

    Google Scholar 

  • Wenzel G, Frei U, Jahoor A, Graner A, Foroughghi-Wehr B (1995) Haploids—an integral part of applied and basic research. In: Terzi M et al (eds) Current issues in plant molecular and cellular biology. Kluwer, Dordrecht, pp 127–135

    Google Scholar 

  • Werner K, Friedt W, Ordon F (2007) Localisation and combination of resistance genes against soil-borne viruses of barley using doubled haploidy and molecular markers. Euphytica 158:323–329

    CAS  Google Scholar 

  • Wojnarowiez G, Jacquard C, Devaux P, Sagwan RS, Clement C (2002) Influence of copper sulphate on anther culture in barley (Hordeum vulgare L.). Plant Sci 162:843–847

    CAS  Google Scholar 

  • Wong RSC, Swanson E (1991) Genetic modification of canola oil: high oleic acid canola. In: Haberstroh C, Morris CE (eds) Fat and cholesterol reduced food. Gulf, Houston, pp 154–164

    Google Scholar 

  • Xu L, Najeeb U, Tang GX, Gu HH, Zhang GQ, He Y, Zhou WJ (2007) Haploid and doubled haploid technology. Adv Bot Res 45:181–216

    CAS  Google Scholar 

  • COST 851. Available at: http://www.scri.sari.ac.uk/assoc/COST851/

  • Yangn HY, Zhou C (1979) Experimental researches on the two pathways of pollen development in Oryza sativa. Acta Bot Sin 21:345–351

    Google Scholar 

  • Yeung EC, Rahman MH, Thorpe TA (1996) Comparative development of zygotic and microspore-derived embryos in Brassica napus L. cv. Topas. I. Histodifferentiation. Int J Plant Sci 157:27–39

    Google Scholar 

  • Yuan S, Liu Y, Fang Z, Yang L, Zhuang M, Zhang Y, Sun P (2009) Study on the relationship between the ploidy level of microspore-derived plants and the number of chloroplast in stomatal guard cells in Brassica oleracea. Agric Sci China 8:939–946

    Google Scholar 

  • Zaki MAM, Dickinson HG (1995) Modification of cell development in vitro: the effect of colchicine on anther and isolated microspore culture in Brassica napus. Plant Cell Tissue Organ 40:255–270

    CAS  Google Scholar 

  • Zhang YX, Lespinasse Y, Chevreau E (1990) Induction of haploidy in fruit trees. Acta Hort 280:293–304

    Google Scholar 

  • Zhao JP, Simmonds DH, Newcomb W (1996) Induction of embryogenesis with colchicine instead of heat in microspores of Brassica napus L. cv. Topas. Planta 198:433–439

    CAS  Google Scholar 

  • Ziauddin A, Ziauddin A, Simion EK, Kasha J (1990) Improved plant regeneration from shed microspore culture in barley (Hordeum vulgare L.). Plant Cell Rep 9:69–72

    Google Scholar 

Download references

Acknowledgments

Due to restrictions in the limit of the article and the large number of research papers on in vitro anther culture, it is impossible to cite all published papers, and the author has had to leave many of these out of the article. Apologies are extended to those authors who have not been mentioned. For more extensive reviews on haploids and doubled haploids, it is possible to consult volumes 1–5 of In vitro haploid production in higher plants (Jain et al. 1996–1997) and the recent volume Advances in haploid production in higher plants (Touraev et al. 2009). For the protocols, the interested reader is referred to Doubled haploid production in crop plants: a manual (Maluszynski et al. 2003a, b).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Antonietta Germanà.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Germanà, M.A. Anther culture for haploid and doubled haploid production. Plant Cell Tiss Organ Cult 104, 283–300 (2011). https://doi.org/10.1007/s11240-010-9852-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9852-z

Keywords

Navigation