Skip to main content
Log in

A review: spreading factor allocation schemes for LoRaWAN

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

LoRaWAN is one of the most suitable communication protocols for the IoT applications that require low power over long-range communication. However, the LoRa network suffers from scalability, low data rate, and other performance issues that significantly affect the network performance. The study of the optimal spreading factor allocation can overcome these issues and help to improve the network performance. Hence, this article puts forward the state-of-the-art literature review on the Spreading Factors Allocation schemes for the LoRaWAN. Industry and academia have done an extensive research to address the issues related to optimal resource allocation, like spreading factor allocation to the spatially distributed end-devices of the network. Most of the problems concerning spreading factor allocation are being explored and resolved. Therefore, this paper reviews and compares various spreading factor allocation schemes proposed by the researchers. Furthermore, we provide a summary of the different review studies of the LoRaWAN. The literature presented in this paper motivates researchers to examine other aspects of spreading factor allocation schemes to improve the LoRa network performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

LoRaWAN:

Long range wide area network

LPWAN:

Low power wide area network

NB-IoT:

Narrow band internet of things

MAC:

Medium access control

CSS:

Chirp spread spectrum

NS:

Network server

TP:

Transmit power

CR:

Code rate

SF:

Spreading factor

BW:

Bandwidth

EAB:

Equal area based

EIB:

Equal interval based

RND:

Random

CRC:

Cyclic redundancy check

ToA:

Time on air

SNR:

Signal to noise ratio

SINR:

Signal to interference plus noise ratio

RSSI:

Received signal strength indicator

ADR:

Adaptive data rate

DER:

Data extraction rate

PDR:

Packet delivery ratio

PHY:

Physical layer

References

  1. Haxhibeqiri, J., De Poorter, E., Moerman, I., & Hoebeke, J. (2018). A survey of lorawan for iot: From technology to application. Sensors, 18, 3995.

  2. Lavric, A., Petrariu, A.I., & Popa, V. (2019). Sigfox communication protocol: the new era of iot? In 2019 international conference on sensing and instrumentation in IoT Era (ISSI), (pp. 1–4).

  3. Adhikary, A., Lin, X., & Wang, Y.E. (2016). Performance evaluation of nb-iot coverage. In 2016 IEEE 84th vehicular technology conference (VTC-Fall), (pp. 1–5).

  4. Ikpehai, A., Adebisi, B., Rabie, K. M., Anoh, K., Ande, R. E., Hammoudeh, M., Gacanin, H., & Mbanaso, U. M. (2019). Low-power wide area network technologies for internet-of-things: A comparative review. IEEE Internet of Things Journal, 6(2), 2225–2240.

    Article  Google Scholar 

  5. Bankov, D., Khorov, E., & Lyakhov, A. (2017). Mathematical model of lorawan channel access with capture effect. In 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC), (pp. 1–5).

  6. Liao, C., Zhu, G., Kuwabara, D., Suzuki, M., & Morikawa, H. (2017). Multi-hop lora networks enabled by concurrent transmission. IEEE Access, 5, 21430–21446.

    Article  Google Scholar 

  7. Croce, D., Gucciardo, M., Mangione, S., Santaromita, G., & Tinnirello, I. (2018). Impact of lora imperfect orthogonality: Analysis of link-level performance. IEEE Communications Letters, 22(4), 796–799.

    Article  Google Scholar 

  8. Caillouet, C., Heusse, M., & Rousseau, F. (2019). Optimal sf allocation in lorawan considering physical capture and imperfect orthogonality. In 2019 IEEE global communications conference (GLOBECOM), (pp. 1–6).

  9. Mahmood, A., Sisinni, E., Guntupalli, L., Rondn, R., Hassan, S. A., & Gidlund, M. (2019). Scalability analysis of a lora network under imperfect orthogonality. IEEE Transactions on Industrial Informatics, 15(3), 1425–1436.

    Article  Google Scholar 

  10. https://airbie.io/en/2019/05/13/the-future-is-lora-why-low-power-networks-will-further-promote-the-internet-of-things-iot. 2019.

  11. Cuomo, F., Campo, M., Caponi, A., Bianchi, G., Rossini, G., & Pisani, P. (2017). Explora: Extending the performance of lora by suitable spreading factor allocations. In 2017 IEEE 13th international conference on wireless and mobile computing, networking and communications (WiMob), (pp. 1–80).

  12. Farhad, A., Kim, D.-H., & Pyun, J.-Y. (2020). Resource allocation to massive internet of things in lorawans. Sensors, 20, 20, 05.

  13. El-Aasser, M., Elshabrawy, T., & Ashour, M. (2018). Joint spreading factor and coding rate assignment in lorawan networks. In 2018 IEEE global conference on internet of things (GCIoT), (pp. 1–7).

  14. https://blog.semtech.com/a-brief-history-of-lora-three-inventorsshare-their-personal-story-at-the-things-conference. January 2020.

  15. LoRaWAN specifications v1.1. https://lora-alliance.org/resource-hub/lorawanr-specification-v11. October 2017.

  16. Casals Ibez, L., Mir Masnou, B., Vidal Ferré, R., & Gomez, C. (2017). Modeling the energy performance of lorawan. Sensors, 17, 2364, 10.

  17. rp002-1.0.1 lorawan regional parameters. https://lora-alliance.org/resource-hub/rp2-101-lorawanrregional-parameters-0. January 2020.

  18. Available online: https://loradevelopers.semtech.com/library/tech-papers-and-guides/loraand-lorawan/. December 2019.

  19. Kherani, A. A., & Maurya, P. (2019). Improved packet detection in lora-like chirp spread spectrum systems. In 2019 IEEE international conference on advanced networks and telecommunications systems (ANTS), (pp. 1–4).

  20. Kufakunesu, R., Hancke, G., & Abu-Mahfouz, A. (2020). A survey on adaptive data rate optimization in lorawan: Recent solutions and major challenges. Sensors (Basel, Switzerland), 20.

  21. Van den Abeele, F., Haxhibeqiri, J., Moerman, I., & Hoebeke, J. (2017). Scalability analysis of large-scale lorawan networks in ns-3. IEEE Internet of Things Journal.

  22. Hou, Y., Liu, Z., & Sun, D. (2020). A novel mac protocol exploiting concurrent transmissions for massive lora connectivity. Journal of Communications and Networks, 22(2), 108–117.

    Article  Google Scholar 

  23. Lim, Jin-Taek., & Han, Youngnam. (2018). Spreading factor allocation for massive connectivity in lora systems. IEEE Communications Letters.

  24. The Things Network N. (2020). https://www.thethingsnetwork.org/docs/lorawan/adaptive-data-rate.html. 6.

  25. Available online: https://lora-alliance.org/in-the-news/lora-alliancer-releases-lorawanr-ts1-104-specification-simplifies-development. October 2020.

  26. Cuomo, F., Gmez, J.C.C., Maurizio, A., Scipione, L., Campo, M., Caponi, A., Bianchi, G., Rossini, G., & Pisani, P. (2018). Towards traffic-oriented spreading factor allocations in lorawan systems. In 2018 17th annual mediterranean ad hoc networking workshop (Med-Hoc-Net), (pp. 1–8).

  27. Asad Ullah, M., Iqbal, J., Hoeller, A., Souza, R.D., & Alves, H. (2019). K-means spreading factor allocation for large-scale lora networks. Sensors, 19(21).

  28. Zhu, G., Liao, C.-H., Sakdejayont, T., Lai, I.-W., Narusue, Y., & Morikawa, H. (2019). Improving the capacity of a mesh lora network by spreading-factor-based network clustering. IEEE Access, 1–1, 02.

  29. Ta, D., Khawam, K., Lahoud, S., Adjih, C., & Martin, S. (2019). Lora-mab: Toward an intelligent resource allocation approach for lorawan. In 2019 IEEE global communications conference (GLOBECOM), (pp. 1–6).

  30. Park, Gyubong, Lee, Wooyeob, & Joe, I. (2020). Network resource optimization with reinforcement learning for low power wide area networks. EURASIP Journal on Wireless Communications and Networking, 2020, 1–20.

    Article  Google Scholar 

  31. Cuomo, F., Garlisi, Domenico, Martino, Alessio, & Martino, Antonio. (2020). Predicting lorawan behavior: How machine learning can help. Computers, 9, 60.

    Article  Google Scholar 

  32. Amichi, L., Kaneko, M., Rachkidy, N.E., & Guitton, A. (2019). Spreading factor allocation strategy for LoRa networks under imperfect orthogonality. In IEEE international conference on communications, Shanghai, China.

  33. Narieda, S., Fujii, T., & Umebayashi, K. (2020). Energy constrained optimization for spreading factor allocation in lorawan. Sensors, 20, 4417.

    Article  Google Scholar 

  34. Cai, Q., & Lin, J. (2019). Improving the scalability of LoRa networks through dynamical parameter set selection, (vol 1101, pp. 3–18).

  35. Cesana, M., Redondi, A., & Ortn, J. (2018). A framework for planning lorawan networks. In 2018 IEEE 29th annual international symposium on personal, indoor and mobile radio communications (PIMRC), (pp. 1–7).

  36. Waret, Antoine, Kaneko, Megumi, Guitton, Alexandre, & El Rachkidy, Nancy. (2019). Lora throughput analysis with imperfect spreading factor orthogonality. IEEE Wireless Communications Letters, 8(2), 408–411.

    Article  Google Scholar 

  37. Haxhibeqiri, J., Van den Abeele, F., Moerman, I., & Hoebeke, J. (2017). Lora scalability: A simulation model based on interference measurements. Sensors, 17(6).

  38. Demetri, S., Ziga, M., Picco, G.P., Kuipers, F., Bruzzone, L., & Telkamp, T. (2019). Automated estimation of link quality for lora: A remote sensing approach. In 2019 18th ACM/IEEE international conference on information processing in sensor networks (IPSN), (pp. 145–156).

  39. El Chall, Rida, Lahoud, Samer, & El Helou, Melhem. (2019). Lorawan network: Radio propagation models and performance evaluation in various environments in lebanon. IEEE Internet of Things Journal, 6(2), 2366–2378.

    Article  Google Scholar 

  40. Qin, Z. & McCann, J.A. (2017). Resource efficiency in low-power wide-area networks for iot applications. In GLOBECOM 2017 - 2017 IEEE global communications conference, (pp. 1–7).

  41. Reynders, B., Meert, W., Pollin, S. (2017). Power and spreading factor control in low power wide area networks. In 2017 IEEE international conference on communications (ICC), (pp. 1–6).

  42. Srensen, R., Razmi, N., Nielsen, J., & Popovski, P. (2019). Analysis of lorawan uplink with multiple demodulating paths and capture effect. (pp. 1–6).

  43. Ta, D., Khawam, K., Lahoud, S., Adjih, C., & Martin, S. (2019). Lora-mab: A flexible simulator for decentralized learning resource allocation in iot networks. In 2019 12th IFIP wireless and mobile networking conference (WMNC), (pp. 55–62).

  44. Georgiou, O., & Raza, U. (2017). Low power wide area network analysis: Can lora scale? IEEE Wireless Communications Letters, 6(2), 162–165.

    Article  Google Scholar 

  45. Li, K., Benkhelifa, F., & McCann, J. (2019). Resource allocation for non-orthogonal multiple access (noma) enabled lpwa networks. In 2019 IEEE global communications conference (GLOBECOM), (pp. 1–6).

  46. Cuomo, F., Maurizio, A., Scipione, L., & Melazzi, N.B. (2019). An on-line spreading factor allocation for a lorawan network. In Proceedings of the 2019 5th international conference on computing and artificial intelligence, ICCAI ’19, pp 6-10, New York, NY, USA. Association for Computing Machinery.

  47. Zorbas, D., Maill, P, O’Flynn, B., & Douligeris, C (2019). Fast and reliable lora-based data transmissions. In IEEE symposium on computers and communications (ISCC).

  48. Premsankar, G., Ghaddar, B., Slabicki, M., & Francesco, M. D. (2020). Optimal configuration of lora networks in smart cities. IEEE Transactions on Industrial Informatics, 16(12), 7243–7254.

    Article  Google Scholar 

  49. Xie, H., Yuan, X., Jia, Z., & Wang Z. (2020). Spreading factor allocation for large-scale deployment in lorawan network. In 2020 5th international conference on computer and communication systems (ICCCS), (pp. 880–885).

  50. Magrin, D., Centenaro, M., & Vangelista, L. (2017). Performance evaluation of lora networks in a smart city scenario. In 2017 IEEE international conference on communications (ICC), (pp. 1–7).

  51. Fawaz, H., Khawam, K., Lahoud, S., Martin, S., & El Helou, M. (2020). Cooperation for spreading factor assignment in a multi-operator lorawan deployment. IEEE Internet of Things Journal, 1–1.

  52. Hamdi, R., Qaraqe, M., Althunibat, S. (2020). Dynamic spreading factor assignment in lora wireless networks. In ICC 2020 - 2020 IEEE international conference on communications (ICC), (pp. 1–5).

  53. Mu, D., Chen, Y., Shi, J., & Sha, M. (2020). Runtime control of lora spreading factor for campus shuttle monitoring. In 2020 IEEE 28th international conference on network protocols (ICNP), (pp. 1–11).

  54. Sallum, E., Pereira, N., Alves, M., & Santos, M. (2020). Improving quality-of-service in lora low-power wide-area networks through optimized radio resource management. Journal of Sensor and Actuator Networks, 9, 10.

    Article  Google Scholar 

  55. Heusse, M., Attia, T., Caillouet, C., Rousseau, F., Duda, A. (2020). Capacity of a lorawan cell. In MSWiM : proceedings of the 23rd international ACM conference on modeling, analysis and simulation of wireless and mobile systems, MSWiM ’20, (pp. 131–140) New York, NY, USA. Association for Computing Machinery.

  56. Jeon, S., Kim, S., & Lee, H. (2020). An adaptive spreading factor selection scheme for a single channel lora modem. Sensors (Basel), 2.

  57. Loubany, Ali, Lahoud, Samer, & El Chall, Rida. (2020). Adaptive algorithm for spreading factor selection in lorawan networks with multiple gateways. Computer Networks, 107491, 08.

    Google Scholar 

  58. Carvalho, Rodrigo, Al-Tam, Faroq., & Correia, Nolia. (2021). Q-learning adr agent for lorawan optimization. In 2021 IEEE international conference on industry 4.0, artificial intelligence, and communications technology (IAICT), (pp. 104–108).

  59. Jiang, C., Yang, Y., Chen, X., Liao, J., Song, W., & Zhang, X. (2021). A new-dynamic adaptive data rate algorithm of lorawan in harsh environment. IEEE Internet of Things Journal, (pp. 1–1).

  60. Maurya, P., & Kherani, A.A. (2020). A modular hybrid simulator for lorawan. In 2020 IEEE international conference on advanced networks and telecommunications systems (ANTS), (pp. 1–4).

  61. Simulation Codes. (2021) Available online: https://github.com/poonam-maurya/LoRaWAN_SF_allocation_schemes.

  62. Benkahla, N., Tounsi, H., Qiong Song, Y., & Frikha, M. (2020). Review and experimental evaluation of ADR enhancements for LoRaWAN networks, Telecommunication Systems, Springer.

  63. de Oliveira, L.R., de Moraes, P., Neto, L.P.S., & da Conceição, A.F. (2020). Review of lorawan applications. CoRR, arXiv: abs/2004.05871.

  64. Ertrk, M.A., Aydn, M.A., Bykakkalar, M.T., Evirgen, H. (2019). A survey on lorawan architecture, protocol and technologies. Future Internet, 11(10).

  65. Ntseane, L. & Isong, B. (2019). Analysis of lora/lorawan challenges: Review. In 2019 international multidisciplinary information technology and engineering conference (IMITEC), (pp. 1–7).

  66. Ugwuanyi, S., Paul, G., & Irvine, J. (2021). Survey of iot for developing countries: Performance analysis of lorawan and cellular nb-iot networks. Electronics, 10(18).

  67. Cotrim, J.R. & Kleinschmidt, J.H. (2020). Lorawan mesh networks: A review and classification of multihop communication. Sensors, 20(15).

  68. Sundaram, Jothi Prasanna Shanmuga., Wan, Du., & Zhao, Zhiwei. (2020). A survey on lora networking: Research problems, current solutions, and open issues. IEEE Communications Surveys Tutorials, 22(1), 371–388.

    Article  Google Scholar 

  69. de Carvalho Silva, J., Rodrigues, J.J.P.C., Alberti, A.M., Solic, P., & Aquino, A.L.L. (2017). Lorawan - a low power wan protocol for internet of things: A review and opportunities. In 2017 2nd international multidisciplinary conference on computer and energy science (SpliTech), (pp. 1–6).

  70. de Moraes, P. & da Conceição, A.F. (2021). A systematic review of security in the lorawan network protocol, CoRR, arXiv: abs/2105.00384.

  71. Marais, J.M., Abu-Mahfouz, A.M., & Hancke, G.P. (2019). A review of lorawan simulators: Design requirements and limitations. In 2019 international multidisciplinary information technology and engineering conference (IMITEC), (pp. 1–6).

  72. Kufakunesu, R., Hancke, G.P., & Abu-Mahfouz, A.M. (2020). A survey on adaptive data rate optimization in lorawan: Recent solutions and major challenges. Sensors, 20(18).

  73. Marais, J.M., Malekian, R., & Abu-Mahfouz, A.M. (2017). Lora and lorawan testbeds: A review. In 2017 IEEE AFRICON, (pp. 1496–1501).

  74. Alenezi, Mohammed, Chai, Michael, Chen, Yue, & Jimaa, Shihab. (2019). Ultra-dense lorawan: Reviews and challenges. IET Communications, 14, 09.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Maurya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, P., Singh, A. & Kherani, A.A. A review: spreading factor allocation schemes for LoRaWAN. Telecommun Syst 80, 449–468 (2022). https://doi.org/10.1007/s11235-022-00903-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-022-00903-4

Keywords

Navigation