Skip to main content
Log in

Scientific explanation as ampliative, specialized embedding: the case of classical genetics

  • Original Research
  • Published:
Synthese Aims and scope Submit manuscript

Abstract

Explanations in genetics have intriguing aspects to both biologists and philosophers, and there is no account that satisfactorily elucidates such explanations. The aim of this article is to analyze the kind of explanations usually given in Classical (Transmission) Genetics (CG) and to present in detail the application of an account of explanation as ampliative, specialized nomological embedding to elucidate the such explanations. First, we present explanations in CG in the classical format of inferences with the explanans as the premises and the explanandum as the conclusion and compare them with explanations in other paradigmatic explanatory fields such as Classical Mechanics. Second, we summarize the main aspects discussed in the literature with regard the peculiarities of genetic explanations. Third, we introduce the account of scientific explanation as ampliative, specialized nomological embedding making use of Sneedian structuralism, in particular the notions of theory-net, fundamental law or guiding principle, specialization, and special laws. Finally, we apply this account to the case of CG and show that this analysis sheds light to the intriguing aspects of genetic explanations and remove most of their alleged oddities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In a broadly, though admittedly not universally, accepted account according to which causation is a relation between particular events in virtue of such events exemplifying general types involved in counterfactual-supporting regularities.

  2. It is not the aim of this paper to carry out a historical and systematic analysis of the relationship between Classical Genetics and Molecular Genetics. However, we would like to point out that, with the emergence of Molecular Genetics, Classical Genetics was neither displaced, replaced nor reduced, and that, at present, explanations provided by Classical Genetics for certain hereditary patterns (e.g. those mentioned in Sect. 2) are still considered valid.

  3. The conclusion follows due to join action of all the premises; notice in particular the crucial role of (3) that implies that, given the dominance of the factors that determine yellow character, three of the four combinations of the two factors express the yellow character. The same applies to the following, less straightforward examples. As we will emphasize below, (3) specifies the particular parameters for transmission and determination of characters by factors for the case in point.

  4. It is worth mentioning that the term ‘fundamental law’ is here used in a different sense from the classical one, i.e. as a true strict universally quantified conditional statement, see e.g. Hempel & Oppenheim (1948).

  5. For a standard presentation of the structuralist criteria of T-theoreticity, see Balzer, Moulines & Sneed (1987). For a discussion of different criteria of theoreticity – either linguistic or model-theoretic –, a comparison of both ways of presentation of criteria – including the model-theoretic structuralist criteria of T-theoreticity –, and a proposal of definitions of theoreticity and pre-theoreticity, see Schurz (2014).

  6. Actually, in the formulation we made of the premise (3) in the CG-explanations above (Sect. 2), although it is clear that such premise includes the specification of parameters (i), (ii) and (iii) of CGGP for (deriving) the explanandum in point, the nomological aspect is less transparent. Premises (3) as formulated above may not look like special “laws”, since they specify such parameters but without explicitly adding “and these are responsible of the phenotype data in point”. Nevertheless, it is clear that they have to be read as implicitly saying so, for (as we emphasized in fn. 4) from them (and the initial conditions stablished in the other premises) one can infer the phenotypic distribution. Since this implication is “general” (do not apply just to a single event but to a type of phenotypic explananda) and “counterfactual-supporting” (it has modal import), we think it has all the elements for considering it lawful (in the minimal sense mentioned above).

  7. The embedding would take place ideally, in an exact way, but as many have emphasized this is in general unrealistic for there always are idealizations and approximations involved. We will not enter into this complication here. For a structuralist treatment of these features, see Balzer, Moulines & Sneed, 1987, Ch. VII.

References

  • Alleva, K., Díez, J., & Federico, L. (2017). Models, theory structure and mechanisms in biochemistry: The case of allosterism. Studies in History and Philosophy of Science Part C, 63, 1–14. https://doi.org/10.1016/j.shpsc.2017.03.004

    Article  Google Scholar 

  • Balzer, W., & Moulines, C. U. (1981). Die Grundstruktur der klassischen Partikelmechanik und ihre Spezialisierungen. Zeitschrift Für Naturforschung, 36, 600–608.

    Article  Google Scholar 

  • Balzer, W., & Lorenzano, P. (2000). The logical structure of classical genetics. Zeitschrift Für Allgemeine Wissenschaftstheorie, 31(2), 243–266. https://doi.org/10.1023/A:1026544916567

    Article  Google Scholar 

  • Balzer, W., Moulines, C. U., & Sneed, J. D. (1987). An architectonic for science. Reidel.

    Book  Google Scholar 

  • Bartelborth, T. (1996a). Begründungsstrategien. Akademie Verlag.

    Book  Google Scholar 

  • Bartelborth, T. (1996b). Scientific explanation. In W. Balzer & C. U. Moulines (Eds.), Structuralist theory of science. Focal issues, new results (pp. 23–43). Walter de Gruyter.

    Google Scholar 

  • Bateson, W., & Punnett, R. C. (1904). Discussion of results. I. Comb-characters. Reports to the Evolution Committee of the Royal Society, II, 108–111.

    Google Scholar 

  • Bateson, W., Saunders, E. R., & Punnett, R. C. (1906). Further experiments on inheritance in sweet peas and stocks: Preliminary account. Proceedings of the Royal Society of London Series B, 77(517), 236.

    Google Scholar 

  • Beatty, J. (1995). The evolutionary contingency thesis. In G. Wolters & J. Lennox (Eds.), Theories and rationality in the biological sciences, The second annual Pittsburgh/Konstanz colloquium in the philosophy of science (pp. 45–81). University of Pittsburgh Press.

    Google Scholar 

  • Braillard, P. A., & Malaterre, C. (Eds.) (2015). Explanation in biology: An enquiry into the diversity of explanatory patterns in the life sciences. Springer.

  • Brandon, R. (1997). Does biology have laws? The experimental evidence. Philosophy of Science, 64, S444–S457. https://doi.org/10.1086/392621

    Article  Google Scholar 

  • Brooker, R. J. (2018). Genetics: Analysis & principles (6th ed.). McGraw-Hill Education.

    Google Scholar 

  • Carman, C. (2010). La refutabilidad del sistema de epiciclos y deferentes de Ptolomeo. Principia, 14(2), 211–239. https://doi.org/10.5007/1808-1711.2010v14n2p211

    Article  Google Scholar 

  • Carman, C. (2015). El sistema de epiciclos y deferentes de Ptolomeo: una reconstrucción. Metatheoria, 6(1), 47–72.

    Article  Google Scholar 

  • Cartwright, N. (1983). How the laws of physics lie. Clarendon Press.

    Book  Google Scholar 

  • Correns, C. (1905). Über Vererbungsgesetze. Gebrüder Borntraeger.

    Google Scholar 

  • Carrier, M. (1995). Evolutionary change and lawlikeness. Beatty on biological generalizations. In G. Wolters & J. Lennox (Eds.), Theories and rationality in the biological sciences, The second annual Pittsburgh/Konstanz colloquium in the philosophy of science (pp. 83-97). University of Pittsburgh Press.

  • Craver, C. F., & Kaiser, M. I. (2013). Mechanisms and laws: Clarifying the debate. In H. K. Chao, S. T. Chen, & R. Millstein (Eds.), Mechanism and causality in biology and economics (pp. 125–145). Springer.

    Chapter  Google Scholar 

  • Darden, L. (1996). Essay review. Generalizations in biology. Studies in History and Philosophy of Science, 27(3), 409–419. https://doi.org/10.1016/0039-3681(95)00050-X

    Article  Google Scholar 

  • Díez, J. A. (2002). Explicación, unificación y subsunción teórica. In W. González (Ed.), Pluralidad de la explicación científica (pp. 73–93). Ariel.

    Google Scholar 

  • Díez, J. A. (2014). Scientific w-explanation as ampliative, specialized embedding: A neo-hempelian account. Erkenntnis, 79(8), 1413–1443. https://doi.org/10.1007/s10670-013-9575-8

    Article  Google Scholar 

  • Díez, J. A., & Lorenzano, P. (2013). Who got what wrong? Sober and F&PP on Darwin: Guiding principles and explanatory models in natural selection. Erkenntnis, 78(5), 1143–1175. https://doi.org/10.1007/s10670-012-9414-3

    Article  Google Scholar 

  • Díez, J. A., & Lorenzano, P. (2015). Are natural selection explanatory models a priori? Biology & Philosophy, 30(6), 787–809. https://doi.org/10.1007/s10539-015-9498-7

    Article  Google Scholar 

  • Díez, J. and Suárez, J. How do networks explain? A neo-Hempelian approach to network explanations of the ecology of the microbiome. Mecanuscript.

  • Dorato, M. (2005). The software of the universe. Ashgate.

    Google Scholar 

  • Dorato, M. (2012). Mathematical biology and the existence of biological laws. In D. Dieks, W. J. Gonzalez, S. Hartmann, M. Stöltzner, & M. Weber (Eds.), Probabilities, laws and structure. The philosophy of science in a European perspective (pp 109–121). (Vol. 3). Springer.

    Google Scholar 

  • Forge, J. (2002). Reflections on structuralism and scientific explanation. Synthese, 130, 109–121. https://doi.org/10.1023/A:1013879326732

    Article  Google Scholar 

  • Hartl, D. L., & Cochrane, B. (2019). Genetics: Analysis of genes and genomes (9th ed.). Jones & Bartlett Learning.

    Google Scholar 

  • Hartwell, L., Goldberg, M. L., Fischer, J., & Hood, L. (2017). Genetics: From genes to genomes. McGraw-Hill.

    Google Scholar 

  • Hempel, C. G., & Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of Science, 15(2), 135–175. https://doi.org/10.1086/286983

    Article  Google Scholar 

  • Hoefer, C. (2009). Causation in space-time theories. In C. Hitchcock, H. Beebee, & P. Menzies (Eds.), Oxford handbook of causation (pp. 685–704). Oxford University Press.

    Google Scholar 

  • Kitcher, P. (1984). 1953 and all that: A tale of two sciences. The Philosophical Review, 93, 335–373. https://doi.org/10.2307/2184541

    Article  Google Scholar 

  • Kitcher, P. (1989). Explanatory unification and the causal structure of the world. In P. Kitcher & W. Salmon (Eds.), Scientific explanation (pp. 410–505). University of Minnesota.

    Google Scholar 

  • Kitcher, P. (1993). The advancement of science: Science without legend, objectivity without illusions. Oxford University Press.

    Google Scholar 

  • Klug, W. S., Cummings, M. R., Spencer, C. A., Palladino, M. A., & Killian, D. (2019). Concepts of genetics (12th ed.). Pearson.

    Google Scholar 

  • Kuhn, T. S. (1974). Second thoughts on paradigms. In F. Suppe (Ed.), The structure of scientific theories (pp. 459–482). University of Illinois Press.

    Google Scholar 

  • Lange, M. (1995). Are there natural laws concerning particular species? Journal of Philosophy, 112, 430–451. https://doi.org/10.2307/2940819

    Article  Google Scholar 

  • Lange, M. (2000). Natural laws in scientific practice. Oxford University Press.

    Google Scholar 

  • Leuridan, B. (2010). Can mechanisms really replace laws of nature? Philosophy of Science, 77, 317–340. https://doi.org/10.1086/652959

    Article  Google Scholar 

  • Leuridan, B. (2014). The structure of scientific theories, explanation, and unification: A causal-structural account. British Journal for the Philosophy of Science, 65(4), 717–771. https://doi.org/10.1093/bjps/axt015

    Article  Google Scholar 

  • Lorenzano, P. (1995). Geschichte und Struktur der klassischen Genetik. Peter Lang.

    Google Scholar 

  • Lorenzano, P. (2000). Classical genetics and the theory-net of genetics. In W. Balzer, C. U. Moulines, & J. D. Sneed (Eds.), Structuralist knowledge representation: Paradigmatic examples (pp. 251–284). Rodopi.

    Google Scholar 

  • Lorenzano, P. (2006). Fundamental laws and laws of biology. In G. Ernst, & K.-G. Niebergall (Eds.), Philosophie der Wissenschaft – Wissenschaft der Philosophie. Festschrift für C. Ulises Moulines zum 60. Geburtstag (pp. 129–155). Mentis-Verlag.

  • Lorenzano, P. (2007). The influence of genetics on philosophy of science: Classical genetics and the structuralist view of theories. In A. Fagot-Largeault, J. M. Torres, & S. Rahman (Eds.), The influence of genetics on contemporary thinking (pp. 99–115). Springer.

    Google Scholar 

  • Lorenzano, P. (2014). What is the status of the Hardy-Weinberg law within population genetics? In M. C. Galavotti, E. Nemeth, & F. Stadler (Eds.), European philosophy of science – Philosophy of science in Europe and the Viennese heritage, Vienna Circle Institute Yearbook 17 (pp. 159–172). Springer.

    Chapter  Google Scholar 

  • Lorenzano, P. (2020). Leyes fundamentales y principios-guía en la metateoría estructuralista. In J. A. Díez (Ed.), Exploraciones pluralistas (pp. 114–125). Tecnos-UNAM-UAM.

    Google Scholar 

  • Lorenzano, P., & Díaz, M. A. (2020). Laws, models, and theories in biology: A unifying interpretation. In L. Baravalle & L. Zaterka (Eds.), Life and evolution, History, Philosophy and Theory of the Life Sciences 26 (pp. 163–207). Springer Nature Switzerland AG.

    Google Scholar 

  • Mendel, G. (1865). Versuche über Pflanzen-Hybriden. Verhandlungen des naturforschenden Vereines in Brünn, 4, 3–57. (Reprinted in Ostwalds Klassiker der exakten Wissenschaften, Nr. 6, Friedr. Vieweg & Sohn, 1970).

  • Mitchell, S. D. (1997). Pragmatic laws. Philosophy of Science, 64, S468–S479.

    Article  Google Scholar 

  • Morgan, T. H., Sturtevant, A. H., Muller, H. J., & Bridges, C. B. (1915). The mechanism of mendelian heredity. Henry Holt and Company.

    Book  Google Scholar 

  • Moulines, C. U. (1978/1984). Cuantificadores existenciales y principios-guía en las teorías físicas. Crítica, 10, 59–88; English translation: Existential quantifiers and guiding principles in physical theories. In J. J. E. Gracia, E. Rabossi, E. Villanueva, & M. Dascal (Eds.), Philosophical analysis in Latin America (pp. 173–198). Reidel.

  • Moulines, C. U. (1991). Pluralidad y recursión. Alianza.

  • Nilsson-Ehle, H. (1908). Einige Ergebnisse von Kreuzungen bei Hafer und Weizen (pp. 257–294). Botaniska Notiser.

    Google Scholar 

  • Pierce, B. A. (2019). Genetics: A conceptual approach (6th ed.). Freeman.

    Google Scholar 

  • Rosenberg, A. (1994). Instrumental biology or the disunity of science. The University of Chicago Press.

    Google Scholar 

  • Rosenberg, A. (2001). How is biological explanation possible? British Journal for the Philosophy of Science, 52(4), 735–760. https://doi.org/10.1093/bjps/52.4.735

    Article  Google Scholar 

  • Ruse, M. (1970). Are there laws in biology? Australasian Journal of Philosophy, 48(2), 234–246. https://doi.org/10.1080/00048407012341201

    Article  Google Scholar 

  • Salmon, W. (1989). Four decades of scientific explanation. In P. Kitcher & W. Salmon (Eds.), Scientific explanation (pp. 3–219). University of Minnesota Press.

    Google Scholar 

  • Schaffner, K. (1993). Discovery and explanation in biology and medicine. University of Chicago Press.

    Google Scholar 

  • Schurz, G. (2014). Criteria of theoreticity: Bridging statement and non-statement view. Erkenntnis, 79, 1521–1545. https://doi.org/10.1007/s10670-013-9581-x

    Article  Google Scholar 

  • Sinnott, E. W., & Dunn, L. C. (1925). Principles of genetics: An elementary text, with problems. McGraw-Hill; 2nd ed., 1932; 3rd ed., 1939; with T. Dobzhansky as co-author, 4th ed., 1950; and 5th ed., 1958.

  • Smart, J. J. C. (1963). Philosophy and scientific realism. Routledge and Kegan Paul.

    Google Scholar 

  • Snustad, D. P., & Simmons, M. J. (2012). Principles of genetics (6th ed.). Wiley.

    Google Scholar 

  • Stegmüller, W. (1986). Theorie und Erfahrung: Dritter Teilband: Die Entwicklung des neuen Strukturalismus seit 1973. Springer.

    Google Scholar 

  • Waters, C. K. (1998). Causal regularities in the biological world of contingent distributions. Biology & Philosophy, 13(1), 5–36. https://doi.org/10.1023/A:1006572017907

    Article  Google Scholar 

  • Waters, C. K. (2004). What was classical genetics? Studies in History and Philosophy of Science, 35, 783–809. https://doi.org/10.1016/s1369-8486(98)00017-x

    Article  Google Scholar 

  • Weber, M. (1998). Representing genes: classical mapping techniques and the growth of genetical knowledge. Studies in History and Philosophy of Biological and Biomedical Sciences, 29, 295-315. https://doi.org/10.1016/s1369-8486(98)00017-x

Download references

Funding

Research for this work has been supported by the National Agency of Scientific and Technological Promotion (PICT-2018-3454) (Argentina) and Ministerio de Ciencia e Innovación (PID2020-115114GB-I00) (Spain). We want to thank two anonymous reviewers for useful comments on a previous version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Lorenzano.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorenzano, P., Díez, J. Scientific explanation as ampliative, specialized embedding: the case of classical genetics. Synthese 200, 510 (2022). https://doi.org/10.1007/s11229-022-03983-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11229-022-03983-6

Keywords

Navigation