Skip to main content
Log in

Between symmetry and asymmetry: spontaneous symmetry breaking as narrative knowing

  • Symmetries and Asymmetries in Physics
  • Published:
Synthese Aims and scope Submit manuscript

Abstract

The paper presents a historical-epistemological analysis of the notion of “spontaneous symmetry breaking”, which I believe today provides a template for conceiving the relationship between symmetry and asymmetry in physics as well as in other areas of the natural sciences. The central thesis of the paper is that spontaneous symmetry breaking represents an instance of “narrative knowing” in the sense developed by recent research in history and philosophy of science (Morgan and Wise (eds) SI narrative in science, Studies in history and philosophy of science, 2017a). Spontaneous symmetry breaking is best understood as a hybrid narrative comprising formulas, verbal statements, images, and at times also other media. This flexible notion can be deployed in different variations, allowing to explain a broad range of non-symmetric phenomena or models as resulting from (not necessarily observable) processes of loss of symmetry. I will support this thesis by first analysing in detail the way in which spontaneous symmetry breaking, and in particular electroweak symmetry breakdown, are presented in today’s physics textbooks and reference works, and then by reconstructing the emergence of the hybrid construct from the late 1950s until the 1970s, when spontaneous symmetry breaking definitively established itself as a key physical notion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Although in principle distinctions between asymmetry, broken symmetry and lack of symmetry might be made, as we shall see, in the case of high energy physics the three notions have today become mutually entangled.

  2. I have discussed this issue in some detail in Borrelli (2012, pp. 201‒202, pp. 211‒212).

  3. Stöltzner incorrectly presents the notion that stories may include mathematical elements as a difference to my own work, overlooking the fact that I had expressed precisely this idea in the same paper which he quotes, where I characterize the naturalness problem as "a hybrid narrative combining words, formulas, numbers and analogies" (Borrelli 2015a, p. 69).

  4. The following overview is compiled on the basis of the following texts: Castellani (2003), Brown and Cao (1991, pp. 215–217), Cheng and Li (1984, pp. 141–151, pp. 240–247), Earman (2003), Itzykson and Zuber (1980, pp. 519–526, pp. 540–549, pp. 612–616), Kibble (2015), Mandl and Shaw (1984, pp. 279–289), Morrison (2003), Weinberg (1996, pp. 163–165) and Zee (2010, pp. 223–230).

  5. I list here once again all the reference works, papers and textbooks in physics and philosophy where I have endeavoured to find an overarching definition of spontaneous symmetry breaking: Castellani (2003), Brown and Cao (1991), Cheng and Li (1984), Earman (2003), Itzykson and Zuber (1980), Kibble (2006, 2015), Liu and Emch (2005), Lyre (2008), Mandl and Shaw (1984), Morrison (2003), Peskin and Schroeder (1995), Strocchi (2008), 't Hooft (1997), Weinberg (1996) and Zee (2010). It may be also noted that, should such a definition exists, it would most probably be quoted by recent physics texts, given the great and growing importance of priority claims among physicists.

  6. I wish to remind readers that, as discussed in Sect. 5 above, there is at present no overarching mathematical framework for spontaneous symmetry breaking which includes the Higgs mechanism, so that the narrative employed by Peskin and Schroeder cannot be seen as a didactic simplification of some refined mathematical argument.

  7. For an overview of the development of particle physics in the 1950s and ‘60s see (Brown et al. 1989). For a more specific, detailed discussion of spontaneous symmetry breaking and of the quest fot the 'origin of mass' see (Borrelli 2015c).

  8. “Es ist keineswegs vom vornerein sicher, daß es auch einen Zustand “Vakuum” geben muß, der alle Symmetrieeigenschaften der Ausgangsgleichung besitzt. […] Wenn es sich als unmöglich erweist, einen voll symmetrischen Zustand “Vakuum” zu konstruieren, so kann dies anschaulich wohl nur so gedeutet werden, daß es sich bei dem unsymmetrischen Grundzustand nicht eigentlich um ein Vakuum, sondern um einen Zustand "Welt" handelt, der die Grundlage für die Existenz der Elementarteilchen bildet” (Dürr et al. 1959, p. 446).

  9. A central tenet of Heisenberg’s view was that physically significant predictions could not be obtained from that theory using perturbative expansions, but only by means of nonperturbative techniques. Such nonperturbative tools, however, still largely had to be developed, and this constituted the main problem of Heisenberg's approach.

  10. The term “renormalization” indicates a procedure necessary to extract finite prediction from perturbative computations in quantum field theory. In those computation divergent integrals appear which have to be formally subtracted following a mathematically non-rigorous, yet carefully defined procedure of “renormalization” which was developed around 1950 contemporary but independently by Richard Feynman, Julian Schwinger and Shinichiro Tomonaga (Schweber 1994).

References

  • Abbott, H. P. (2014). Narrativity. In P. Hühn et al. (Eds.), The living handbook of narratology. Hamburg: Hamburg University. http://www.lhn.uni-hamburg.de/article/narrativity. Accessed 7 July 2019.

  • Anderson, P. W. (1963). Plasmons, gauge invariance, and mass. Physical Review, 130, 439–442. https://doi.org/10.1103/PhysRev.130.439.

    Article  Google Scholar 

  • Azzouni, S., Böschen, S., & Reinhardt, C. (Eds.). (2015). Erzählung und Geltung: Wissenschaft zwischen Autorschaft und Autorität. Weilerswist: Velbrück Wissenschaft.

    Google Scholar 

  • Baker, M., & Glashow, S. (1962). Spontaneous breakdown of elementary particle symmetries. Physical Review, 128, 2462–2471. https://doi.org/10.1103/PhysRev.128.2462.

    Article  Google Scholar 

  • Beer, G. (1983). Darwin’s plots: Evolutionary narrative in Darwin, George Eliot and nineteenth-century fiction. Cambridge: Cambridge University Press.

    Google Scholar 

  • Blume, H., & Leitgeb, C. (Eds.). (2015). Narrated communities—narrated realities: Narration as cognitive processing and cultural practice. Leiden: Brill/Rodopi.

    Google Scholar 

  • Bogoliubov, N. (1958). A new method in the theory of superconductivity. London: Chapman & Hall.

    Google Scholar 

  • Borrelli, A. (2012). The case of the composite Higgs: The model as a ‘Rosetta stone’ in contemporary high-energy physics. Studies in the History and Philosophy of Modern Physics, 43, 195–214. https://doi.org/10.1140/epjh/e2014-50026-9.

    Article  Google Scholar 

  • Borrelli, A. (2015a). Between Logos and Mythos narratives of “naturalness” in today’s particle physics community. In H. Blume et al. (Eds.), Narrated communities—Narrated realities. Narration as cognitive processing and cultural practice (pp. 69–83). Leiden: Brill. http://booksandjournals.brillonline.com/content/books/b9789004184121s006.

  • Borrelli, A. (2015b). Genesis des Gottesteilchen: Narrativen der Massenerzeugung in der Teilchenphysik. In S. Azzouni et al. (Eds.), Erzählung und Geltung. Wissenschaft zwischen Autorschaft und Autorität (pp. 63–86). Weilerswist: Verlag Velbrück Wissenschaft.

  • Borrelli, A. (2015c). The story of the Higgs boson: The origin of mass in early particle physics. The European Physical Journal H, 40(1), 1–52. https://doi.org/10.1140/epjh/e2014-50026-9.

    Article  Google Scholar 

  • Borrelli, A. (2015d). The making of an intrinsic property: “Symmetry heuristics” in early particle physics. Studies in History and Philosophy of Science, 50, 59–70. https://doi.org/10.1016/j.shpsa.2014.09.009.

    Article  Google Scholar 

  • Borrelli, A. (2017a). Quantum theory: A media-archeological perspective. In A. Dippel & M. Warnke (Eds.), Interferences and events. On epistemic shifts in physics through computer simulations (pp. 95–116). Lüneburg: Meson Press. https://meson.press/books/interferences-and-events/.

  • Borrelli, A. (2017b). Symmetry, beauty and belief in high-energy physics. Approaching Religion, 7(2), 22–36.

    Article  Google Scholar 

  • Borrelli, A. (2017c). The uses of isospin in early nuclear and particle physics. Studies in History and Philosophy of Modern Physics, 60(C), 81–94. https://doi.org/10.1016/j.shpsb.2017.03.00.

    Article  Google Scholar 

  • Borrelli, A. (2018). The Weinberg–Salam model of electroweak interactions. Ingenious discovery or lucky hunch? Annalen der Physik, 530(2), 21. https://doi.org/10.1002/andp.201700454.

    Article  Google Scholar 

  • Borrelli, A. (2019). Narratives in early modern and modern science. In M. Fludernik & M.-L. Ryan (Eds.), Narrative factuality: A handbook (pp. 429–442). Berlin: de Gruyter.

  • Brading, K., Castellani, E., & Teh, N. (2017). Symmetry and symmetry breaking. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (Winter 2017 Edition). https://plato.stanford.edu/archives/win2017/entries/symmetry-breaking/. Accessed 7 July 2019.

  • Brandt, C. (2009). Wissenschaftserzählungen. Narrative Strukturen im naturwissenschaftlichen Diskurs. In C. Klein & M. Martinez (Eds.), Wirklichkeitserzählungen: Felder, Formen und Funktionen nicht-literarischen Erzählens (pp. 81–109). Stuttgart: Metzler.

  • Brown, L., & Cao, T. Y. (1991). Spontaneous breakdown of symmetry: Its rediscovery and integration into quantum field theory. Historical Studies in the Physical and Biological Sciences, 21, 211–235. https://doi.org/10.2307/27757733.

    Article  Google Scholar 

  • Brown, L., Dresden, M., & Hoddeson, L. (1989). Pions to quarks: Particle physics in the 1950s. In L. Brown et al. (Eds.), Pions to quarks. Particle physics in the 1950s (pp. 3–39). Cambridge: Cambridge University Press.

  • Castellani, E. (2003). On the meaning of symmetry breaking. In E. Castellani & K. Brading (Eds.), Symmetries in physics (pp. 321–334). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Cheng, T. P., & Li, L.-F. (1984). Gauge theory of elementary particle physics. Oxford: Clarendon Press.

    Google Scholar 

  • Daston, L., & Galison, P. (2010). Objectivity. New York: Zone Books.

    Google Scholar 

  • Dürr, H.-P. (1993). Unified field theory of elementary particles I, II. In W. Heisenberg, Collected works. Edited by W. Blum et al. (pp. 133–140 and 325–334). Berlin: Springer.

  • Dürr, H.-P., Heisenberg, W., Mitter, H., Schlieder, S., & Yamazaki, K. (1959). Zur Theorie der Elementarteilchen. Zeitschrift für Naturforschung 14a: 441–485.

  • Earman, J. (2003). Rough guide to spontaneous symmetry breaking. In E. Castellani & K. Brading (Eds.), Symmetries in physics (pp. 335–346). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Earman, J. (2004). Laws, symmetry, and symmetry breaking: Invariance, conservation principles, and objectivity. Philosophy of Science, 71, 1227–1241. https://doi.org/10.1086/428016.

    Article  Google Scholar 

  • Earman, J., & Mosterin, J. (1999). A critical look at inflationary cosmology. Philosophy of Science, 66, 1–49. https://doi.org/10.1086/392675.

    Article  Google Scholar 

  • Englert, F. (2013). The BEH mechanism and its scalar boson. Lecture slides. Nobel Lecture. NobelPrize.org. Nobel Media AB 2018. https://www.nobelprize.org/prizes/physics/2013/englert/lecture/. Accessed 7 July 2019.

  • Fraser, D., & Koberinski, A. (2016). The Higgs mechanism and superconductivity: A case study of formal analogies. Studies in History and Philosophy of Modern Physics, 55, 72–91. https://doi.org/10.1016/j.shpsb.2016.08.003.

    Article  Google Scholar 

  • Galison, P. (2004). Mirror symmetry: Peoples, values and objects. In M. N. Wise (Ed.), Growing explanations: Historical perspectives on recent science (pp. 23–63). Durham: Duke University Press.

    Google Scholar 

  • Gell-Mann, M., & Lévy, M. (1960). The axial vector current in beta decay. Nuovo Cimento, 16, 705–726. https://doi.org/10.1007/BF02859738.

    Article  Google Scholar 

  • Goldstone, J. (1961). Field theories with “superconductor” solutions. Nuovo Cimento, 19, 154–164. https://doi.org/10.1007/BF02812722.

    Article  Google Scholar 

  • Harris, M. (2012). Do androids prove theorems in their sleep? In A. K. Doxiadēs & B. Mazur (Eds.), Circles disturbed: The interplay of mathematics and narrative (pp. 130–182). Princeton: Princeton University Press.

    Google Scholar 

  • Hartmann, S. (1999). Models and stories in hadron physics. In M. Morgan & M. Morrison (Eds.), Models as mediators: Perspectives on natural and social science (pp. 326–346). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Hoddeson, L., Schubert, H., Heims, S. J., & Baym, G. (1992). Collective phenomena. In L. Hoddeson, et al. (Eds.), Out of the crystal maze (pp. 489–616). Oxford: Oxford University Press.

    Google Scholar 

  • Itzykson, C., & Zuber, J. B. (1980). Quantum field theory. New York: McGraw-Hill.

    Google Scholar 

  • Jaeger, S. (2009). Erzählen im historiographischen Diskurs. In C. Klein & M. Martinez (Eds.), Wirklichkeitserzählungen: Felder, Formen und Funktionen nicht-literarischen Erzählens (pp. 111–135). Stuttgart: Metzler.

    Google Scholar 

  • Kaiser, D. (Ed.). (2005a). Pedagogy and the practice of science: Historical and contemporary perspectives. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kaiser, D. (2005b). Drawing theories apart. Chicago: Unversity of Chicago Press.

    Book  Google Scholar 

  • Kaiser, D. (2006). Whose mass is it anyway? Particle cosmology and the objects of theory. Social Studies of Science, 36, 533–564. https://doi.org/10.1177/0306312706059457.

    Article  Google Scholar 

  • Karaca, K. (2013). The construction of the Higgs mechanism and the emergence of the electroweak theory. Studies in History and Philosophy of Modern Physics, 44, 1–16. https://doi.org/10.1016/j.shpsb.2012.05.003.

    Article  Google Scholar 

  • Kibble, T. W. B. (2006). Spontaneous symmetry breaking in field theory. Encyclopaedia of Mathematical Physics, 5, 198–204.

    Article  Google Scholar 

  • Kibble, T. W. B. (2015). Spontaneous symmetry breaking in gauge theories. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 373, 20140033. https://doi.org/10.1098/rsta.2014.0033.

    Article  Google Scholar 

  • Liu, C., & Emch, G. G. (2005). Explaining quantum spontaneous symmetry breaking. Studies in History and Philosophy of Modern Physics, 36, 137–163. https://doi.org/10.1016/j.shpsb.2004.12.003.

    Article  Google Scholar 

  • Lyre, H. (2008). Does the Higgs mechanism exist? International Studies in the Philosophy of Science, 22, 119–133. https://doi.org/10.1080/02698590802496664.

    Article  Google Scholar 

  • Mandl, F., & Shaw, G. (1984). Quantum field theory. New York: Wiley.

    Google Scholar 

  • Morgan, M., & Wise, M. N. (Eds.). (2017a). Special Issue Narrative in Science, Studies in History and Philosophy of Science (Vol. 62(C)).

  • Morgan, M., & Wise, M. N. (2017b). Narrative science and narrative knowing. Introduction to special issue on narrative science. Studies in History and Philosophy of Science Part A, SI: Narrative in Science, 62(C), 1–5. https://doi.org/10.1016/j.shpsa.2017.03.005.

    Article  Google Scholar 

  • Morrison, M. (2003). Spontaneous symmetry breaking: Theoretical arguments and philosophical problems. In E. Castellani & K. Brading (Eds.), Symmetries in physics (pp. 347–363). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Nambu, Y. (1960). Quasi-particles and gauge invariance in the theory of superconductivity. Physical Review, 117, 648–663. https://doi.org/10.1103/PhysRev.117.648.

    Article  Google Scholar 

  • Nambu, Y., & Jona-Lasinio, G. (1961). Dynamical model of elementary particles based on an analogy with superconductivity I. Physical Review, 122, 345–358. https://doi.org/10.1103/PhysRev.122.345.

    Article  Google Scholar 

  • Peskin, M. E., & Schroeder, D. V. (1995). An introduction to quantum field theory. Boulder: Westview.

    Google Scholar 

  • Rosales, A. (2017). Theories that narrate the world: Ronald A. Fisher’s mass selection and Sewall Wright’s shifting balance. Studies in History and Philosophy of Science, SI: Narrative in Science, 62(C), 22–30. https://doi.org/10.1016/j.shpsa.2017.03.007.

    Article  Google Scholar 

  • Roth, P. A. (2017). Essentially narrative explanations. Studies in History and Philosophy of Science, SI: Narrative in Science, 62(C), 42–50. https://doi.org/10.1016/j.shpsa.2017.03.008.

    Article  Google Scholar 

  • Sarkar, U. (2008). Particle and astroparticle physics. New York: Taylor & Francis.

    Google Scholar 

  • Schaeffer, J.-M. (2013). Fictional vs. factual narration. In P. Hühn et al. (Eds.), The living handbook of narratology. Hamburg: Hamburg University. http://www.lhn.uni-hamburg.de/article/fictional-vs-factual-narration. Accessed 7 July 2019.

  • Schweber, S. (1994). QED and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Schwinger, J. (1957). A theory of the fundametal interaction. Annals of Physics, 2, 407–434. https://doi.org/10.1016/0003-4916(57)90015-5.

    Article  Google Scholar 

  • Stöltzner, M. (2017). The variety of explanations in the Higgs sector. Synthese, 194, 433–460. https://doi.org/10.1007/s11229-016-1112-2.

    Article  Google Scholar 

  • Strocchi, F. (2008). Symmetry breaking. Berlin: Springer.

    Book  Google Scholar 

  • Struvye, W. (2011). Gauge invariant account of the Higgs mechanism. Studies in History and Philosophy of Modern Physics, 42, 226–236. https://doi.org/10.1016/j.shpsb.2011.06.003.

    Article  Google Scholar 

  • ‘t Hooft, G. (1997). Renormalization of gauge theories. In L. Hoddeson, et al. (Eds.), The rise of the Standard Model (pp. 179–198). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Weinberg, S. (1974). Gauge and global symmetries at high temperature. Physical Review D, 9, 3357–3378. https://doi.org/10.1103/PhysRevD.9.3357.

    Article  Google Scholar 

  • Weinberg, S. (1977). The first three minutes. New York: Basic Books.

    Google Scholar 

  • Weinberg, S. (1996). Quantum field theory 2. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Wise, M. N. (Ed.). (2004a). Growing explanations: Historical perspectives on recent science. Durham: Duke University Press.

    Google Scholar 

  • Wise, M. N. (2004b). Introduction: Dynamics all the way up. In M. N. Wise (Ed.), Growing explanations: Historical perspectives on recent science (pp. 1–20). Durham: Duke University Press.

    Chapter  Google Scholar 

  • Wise, M. N. (2011). Science as (historical) narrative. Erkenntnis, 75(3), 349–376. https://doi.org/10.1007/s10670-011-9339-2.

    Article  Google Scholar 

  • Wise, M. N. (2017). On the narrative form of simulations. Studies in History and Philosophy of Science, SI: Narrative in Science, 62(C), 74–85. https://doi.org/10.1016/j.shpsa.2017.03.010.

    Article  Google Scholar 

  • Zee, A. (2010). Quantum field theory in a nutshell. Princeton: Princeton University Press.

    Google Scholar 

Download references

Acknowledgements

The research presented here was funded by the project “Exploring the “dark ages” of particle physics: isospin, strangeness and the construction of physical–mathematical concepts in the pre-Standard-Model era (ca. 1950–1965)” (German Research Council (Deutsche Forschungsgemeinschaft (DFG)) grant BO 4062/2-1), and by the Institute for Advances Study on Media Cultures of Computer Simulation (MECS), Leuphana Universität Lüneburg (DFG research Grant KFOR 1927).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arianna Borrelli.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borrelli, A. Between symmetry and asymmetry: spontaneous symmetry breaking as narrative knowing. Synthese 198, 3919–3948 (2021). https://doi.org/10.1007/s11229-019-02320-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-019-02320-8

Keywords

Navigation