Skip to main content
Log in

What is a logical theory? On theories containing assertions and denials

  • S.I.: Varieties of Entailment
  • Published:
Synthese Aims and scope Submit manuscript

Abstract

The standard notion of formal theory, in logic, is in general biased exclusively towards assertion: it commonly refers only to collections of assertions that any agent who accepts the generating axioms of the theory should also be committed to accept. In reviewing the main abstract approaches to the study of logical consequence, we point out why this notion of theory is unsatisfactory at multiple levels, and introduce a novel notion of theory that attacks the shortcomings of the received notion by allowing one to take both assertions and denials on a par. This novel notion of theory is based on a bilateralist approach to consequence operators, which we hereby introduce, and whose main properties we investigate in the present paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Consider for instance a set of sentences \(\mathbb {L}=\{p,q\}\), and a semantics containing only two canonical valuations, \(\nu _p\) and \(\nu _q\), such that \(\nu _x(y)=1\) iff \(x=y\). (This sort of problems related to the failure of absoluteness has been discussed as early as in Carnap (1943).)

  2. For a straightforward class of examples (cf. Marcos 2007), let \(\nu _{\top \!\!\!\top }\) denote the the ‘dadaistic’ valuation on \(\mathbb {L}\) such that \({\mathbb {1}}_{\nu _{\top \!\!\!\top }}=\mathbb {L}\), consider a semantics \(\mathbf {V}\) such that \(\nu _{\top \!\!\!\top }\not \in \mathbf {V}\), and let \(\mathbf {V}^\star :=\mathbf {V}\cup \{\nu _{\top \!\!\!\top }\}\). Then \(\vartriangleright ^\mathsf {T}_{\mathbf {V}}\;=\;\vartriangleright ^\mathsf {T}_{\mathbf {V}^\star }\), and \(\mathbb {L}\vartriangleright ^\mathsf {S}_{\mathbf {V}}\varnothing \), while \(\mathbb {L}\blacktriangleright _{\mathbf {V}^\star }\varnothing \).

References

  • Badia, G., & Marcos, J. (2018). On classes of structures axiomatizable by universal d-Horn sentences and universal positive disjunctions. Algebra Universalis, 79(2), 41.

    Article  Google Scholar 

  • Blasio, C., Marcos, J., & Wansing, H. (2017). An inferentially many-valued two-dimensional notion of entailment. Bulletin of the Section of Logic, 46, 233–262.

    Article  Google Scholar 

  • Carnap, R. (1943). Formalization of logic. Cambridge: Harvard.

    Google Scholar 

  • Chang, C. C., & Keisler, H. J. (1973). Model theory. Studies in logic and the foundations of mathematics (Vol. 73). New York: North-Holland.

    Google Scholar 

  • Curry, H. (1963). Foundations of mathematical logic. New York: McGraw-Hill.

    Google Scholar 

  • Czelakowski, J. (1983). Some theorems on structural entailment relations. Studia Logica, 42(4), 417–429.

    Article  Google Scholar 

  • Dunn, J. M., & Hardegree, G. M. (2001). Algebraic methods in philosophical logic. Oxford: Clarendon Press.

    Google Scholar 

  • Gabbay, D. M. (1981). Semantic investigations in Heyting’s intuitionistic logic. Synthese library (Vol. 148). Berlin: Springer.

    Book  Google Scholar 

  • Hilbert, D. (1900). Über den Zahlbegriff. Jahresbericht der Deutschen Mathematiker-Vereiningung, 8, 180–184.

    Google Scholar 

  • Humberstone, L. (2011). The connectives. Cambridge: MIT Press.

    Book  Google Scholar 

  • Humberstone, L. (2012). Dana Scott’s work with generalized consequence relations. In J.-Y. Béziau (Ed.), Universal logic: An anthology (pp. 263–279). Basel: Birkhäuser.

    Chapter  Google Scholar 

  • Łos, J., & Suszko, R. (1958). Remarks on sentential logics. Indagationes Mathematicae, 20, 177–183.

    Article  Google Scholar 

  • Marcelino, S., & Caleiro, C. Axiomatizing non-deterministic many-valued generalized consequence relations. Synthese. https://doi.org/10.1007/s11229-019-02142-8.

  • Marcos, J. (2007). Ineffable inconsistencies. In J.-Y. Béziau, et al. (Eds.), Handbook of paraconsistency. Studies in logic (Vol. 9, pp. 301–311). London: College Publications.

    Google Scholar 

  • Martin, N. M., & Pollard, S. (1996). Closure spaces and logic. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Morgan, C. G. (1973). Sentential calculus for logical falsehoods. Notre Dame Journal of Formal Logic, XIV(3), 347–353.

    Google Scholar 

  • Segerberg, K. (1982). Classical propositional operators: An exercise in the foundations of logic. Oxford: Oxford University Press.

    Google Scholar 

  • Scott, D. (1974). Completeness and axiomatizability in many-valued logic. In Proceedings of the Tarski symposium (Vol. 25, pp. 411–436). Providence: American Mathematical Society.

  • Shoesmith, D. J., & Smiley, T. J. (1978). Multiple-conclusion logic. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Tarski, A. (1930). Über einige fundamentale Begriffe der Metamathematik. Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie, 23, 22–29.

    Google Scholar 

  • Tarski, A. (1936). Über den Begriff der logischen Folgerung. In Actes du Congrès International de Philosophie Scientifique (Vol. 7, pp. 1–11). Paris.

  • Tarski, A. (1952). Some notions and methods on the borderline of algebra and metamathematics. In Proceedings of the international congress of mathematicians (Vol. I, pp. 705–719). American Mathematical Society.

  • Wójcicki, R. (1998). Theory of logical calculi. Synthese library (Vol. 199). Dordrecht: Kluwer.

    Google Scholar 

  • Zygmunt, J. (1984). An essay in matrix semantics for consequence relations. Acta Universitatis Wratislaviensis (Vol. 741). Wrocław: U. Wrocław.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Marcos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author acknowledges that the work was done under the scope of Project UID/EEA/50008/2019 of Instituto de Telecomunicações, financed by the applicable framework (FCT/MEC through national funds and co-funded by FEDER-PT2020). The third author acknowledges partial funding by CNPq. The first author passed away on 26 Aug 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blasio, C., Caleiro, C. & Marcos, J. What is a logical theory? On theories containing assertions and denials. Synthese 198 (Suppl 22), 5481–5504 (2021). https://doi.org/10.1007/s11229-019-02183-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-019-02183-z

Keywords

Navigation