Skip to main content
Log in

On the Modal Logic of Subset and Superset: Tense Logic over Medvedev Frames

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

Viewing the language of modal logic as a language for describing directed graphs, a natural type of directed graph to study modally is one where the nodes are sets and the edge relation is the subset or superset relation. A well-known example from the literature on intuitionistic logic is the class of Medvedev frames \({\langle W, R\rangle}\) where W is the set of nonempty subsets of some nonempty finite set S, and xRy iff \({x\supseteq y}\), or more liberally, where \({\langle W, R\rangle}\) is isomorphic as a directed graph to \({\langle \wp(S)\setminus\{\emptyset\},\supseteq\rangle}\). Prucnal (Stud Logica 38(3):247–262, 1979) proved that the modal logic of Medvedev frames is not finitely axiomatizable. Here we continue the study of Medvedev frames with extended modal languages. Our results concern definability. We show that the class of Medvedev frames is definable by a formula in the language of tense logic, i.e., with a converse modality for quantifying over supersets in Medvedev frames, extended with any one of the following standard devices: nominals (for naming nodes), a difference modality (for quantifying over those y such that \({x\not= y}\)), or a complement modality (for quantifying over those y such that \({x\not\supseteq y}\)). It follows that either the logic of Medvedev frames in one of these tense languages is finitely axiomatizable—which would answer the open question of whether Medvedev’s (Sov Math Dokl 7:857–860, 1966) “logic of finite problems” is decidable—or else the minimal logics in these languages extended with our defining formulas are the beginnings of infinite sequences of frame-incomplete logics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Benthem J. F. A. K., Blok W. J.: Transitivity follows from Dummett’s axiom. Theoria 44(2), 117–118 (1978)

    Article  Google Scholar 

  2. van Benthem J.: Minimal deontic logics (Abstract). Bulletin of the Section of Logic 8(1), 36–41 (1979)

    Google Scholar 

  3. van Benthem J.: The range of modal logic. Journal of Applied Non-Classical Logics 9(2), 407–442 (1999)

    Article  Google Scholar 

  4. van Benthem, J., Correspondence theory, in D. M. Gabbay, and F. Guenthner, (eds.), Handbook of Philosophical Logic, vol. 3, 2 edn., Springer, Dordrecht, 2001, pp. 325–408.

  5. van Benthem, J. and G. Bezhanishvili, Modal logics of space, in M. Aiello, I. Pratt-Hartmann, and J. van Benthem, (eds.), Handbook of Spatial Logics, Springer, New York, 2007, pp. 217–298.

  6. Bezhanishvili, N., and B. ten Cate, Transfer results for hybrid logic. Part I: the case without satisfaction operators, Journal of Logic and Computation 16(2):177–197, 2006.

  7. Blackburn P.: Nominal tense logic. Notre Dame Journal of Formal Logic 34(1), 56–83 (1993)

    Article  Google Scholar 

  8. Blackburn, P., M. de Rijke, and Y. Venema, Modal Logic, Cambridge University Press, New York, 2001.

  9. Boolos, G., The Logic of Provability, Cambridge University Press, New York, 1995.

  10. ten Cate, B., Model theory for extended modal languages, Ph.D. thesis, University of Amsterdam, 2005. ILLC Dissertation Series DS-2005-01.

  11. ten Cate, B., and T. Litak, The importance of being discrete, Technical Report PP-2007-39, Institute for Logic, Language and Computation, University of Amsterdam, 2007.

  12. Chagrov, A., and M. Zakharyaschev, Modal Logic, Clarendon Press, Oxford, 1997.

  13. Fine K.: An ascending chain of S4 logics. Theoria 40(2), 110–116 (1974)

    Article  Google Scholar 

  14. Fontaine, G., Axiomatization of ML and Cheq, Master’s thesis, University of Amsterdam, 2006. ILLC Master of Logic Series MoL-2006-08.

  15. Fontaine, G., ML is not finitely axiomatizable over Cheq, in G. Governatori, I. Hodkinson, and Y. Venema, (eds.), Advances in Modal Logic, vol. 6, College Publications, London, 2006, pp. 139–146.

  16. Gabbay D. M.: The decidability of the Kreisel–Putnam system. The Journal of Symbolic Logic 35(3), 431–437 (1970)

    Article  Google Scholar 

  17. Gargov G., Goranko V.: Modal logic with names. Journal of Philosophical Logic 22(6), 607–636 (1993)

    Article  Google Scholar 

  18. Gargov, G., and S. Passy, A note on Boolean modal logic, in P. P. Petkov, (ed.), Mathematical Logic, Plenum Press, New York, 1990, pp. 299–309.

  19. Gargov, G., S. Passy, and T. Tinchev, Modal environment for Boolean speculations, in D. Scordev, (ed.), Mathematical Logic and Its Applications, Plenum Press, New York, 1987, pp. 253–263.

  20. Goranko, V., Completeness and incompleteness in the bimodal base \({\mathcal{L}(R,-R)}\), in P. P. Petkov, (ed.), Mathematical Logic, Plenum Press, New York, 1990, pp. 311–326.

  21. Goranko V.: Modal definability in enriched languages. Notre Dame Journal of Formal Logic 31(1), 81–105 (1990)

    Article  Google Scholar 

  22. Goranko V., Passy S.: Using the universal modality: gains and questions. Journal of Logic and Computation 2(1), 5–30 (1992)

    Article  Google Scholar 

  23. Goranko V., Vakarelov D.: Sahlqvist formulas in hybrid polyadic modal logics. Journal of Logic and Computation 11(5), 737–754 (2001)

    Article  Google Scholar 

  24. Hamkins J. D., Leibman G., Löwe B.: Structural connections between a forcing class and its modal logic. Israel Journal of Mathematics 207(2), 617–651 (2015)

    Article  Google Scholar 

  25. Hamkins J. D., Löwe B.: The modal logic of forcing. Transactions of the American Mathematical Society 360(4), 1793–1817 (2008)

    Article  Google Scholar 

  26. Humberstone L.: Inaccessible worlds. Notre Dame Journal of Formal Logic 24(3), 346–352 (1983)

    Article  Google Scholar 

  27. Humberstone L.: Modal logic for other-world agnostics: neutrality and Halldén completeness. Journal of Philosophical Logic 36(1), 1–32 (2007)

    Article  Google Scholar 

  28. Jech, T., Multiple Forcing, Cambridge University Press, Cambridge, 1986.

  29. Maksimova L. L., Shehtman V. B., Skvortsov D. P.: The impossibility of a finite axiomatization of Medvedev’s logic of finitary problems. Soviet Mathematics Doklady 20, 394–398 (1979)

    Google Scholar 

  30. Medvedev Y. T.: Finite problems. Soviet Mathematics Doklady 3, 227–230 (1962)

    Google Scholar 

  31. Medvedev Y. T.: Interpretation of logical formulas by means of finite problems. Soviet Mathematics Doklady 7, 857–860 (1966)

    Google Scholar 

  32. Prucnal T.: On two problems of Harvey Friedman. Studia Logica 38(3), 247–262 (1979)

    Article  Google Scholar 

  33. de Rijke M.: The modal logic of inequality. The Journal of Symbolic Logic 57(2), 566–584 (1992)

    Article  Google Scholar 

  34. Segerberg K.: A note on the logic of elsewhere. Theoria 46(2–3), 183–187 (1980)

    Google Scholar 

  35. Shehtman V. B., Skvortsov D. P.: Logics of some Kripke frames connected with Medvedev notion of informational types. Studia Logica 45(1), 101–118 (1986)

    Article  Google Scholar 

  36. Shehtman V.: Modal counterparts of Medvedev logic of finite problems are not finitely axiomatizable. Studia Logica 49(3), 365–385 (1990)

    Article  Google Scholar 

  37. Skvortsov D. P.: Logic of infinite problems and Kripke models on atomic semilattices of sets. Soviet Mathematics Doklady 20, 360–363 (1979)

    Google Scholar 

  38. Vakarelov, D., Modal characterization of the classes of finite and infinite quasi-ordered sets, in P. P. Petkov, (ed.), Mathematical Logic, Plenum Press, New York, 1990, pp. 373–387.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley H. Holliday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holliday, W.H. On the Modal Logic of Subset and Superset: Tense Logic over Medvedev Frames. Stud Logica 105, 13–35 (2017). https://doi.org/10.1007/s11225-016-9680-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-016-9680-1

Keywords

Navigation