Skip to main content
Log in

Denotational Semantics for Modal Systems S3–S5 Extended by Axioms for Propositional Quantifiers and Identity

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

There are logics where necessity is defined by means of a given identity connective: \({\square\varphi := \varphi\equiv\top}\) (\({\top}\) is a tautology). On the other hand, in many standard modal logics the concept of propositional identity (PI) \({\varphi\equiv\psi}\) can be defined by strict equivalence (SE) \({\square(\varphi\leftrightarrow\psi)}\) . All these approaches to modality involve a principle that we call the Collapse Axiom (CA): “There is only one necessary proposition.” In this paper, we consider a notion of PI which relies on the identity axioms of Suszko’s non-Fregean logic SCI. Then S3 proves to be the smallest Lewis modal system where PI can be defined as SE. We extend S3 to a non-Fregean logic with propositional quantifiers such that necessity and PI are integrated as non-interdefinable concepts. CA is not valid and PI refines SE. Models are expansions of SCI-models. We show that SCI-models are Boolean prealgebras, and vice-versa. This associates non-Fregean logic with research on Hyperintensional Semantics. PI equals SE iff models are Boolean algebras and CA holds. A representation result establishes a connection to Fine’s approach to propositional quantifiers and shows that our theories are conservative extensions of S3–S5, respectively. If we exclude the Barcan formula and a related axiom, then the resulting systems are still complete w.r.t. a simpler denotational semantics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blackburn P., de Rijke M., Venema Y.: Modal Logic, . Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  2. Bloom S.L.: A completeness theorem for “Theories of Kind W”. Studia Logica 27, 43–55 (1971)

    Article  Google Scholar 

  3. Bloom S.L., Suszko R.: Semantics for the sentential calculus with identity. Studia Logica 28, 77–81 (1971)

    Article  Google Scholar 

  4. Bloom S.L., Suszko R.: Investigation into the sentential calculus with identity. Notre Dame Journal of Formal Logic 13(3), 289–308 (1972)

    Article  Google Scholar 

  5. Bull R.A.: On modal logic with propositional quantifiers. The Journal of Symbolic Logic 34, 257–263 (1969)

    Article  Google Scholar 

  6. Cresswell M.J.: Another basis of S4. Logique et Analyse 31, 191–195 (1965)

    Google Scholar 

  7. Cresswell M.J.: Propositional identity. Logique et Analyse 39(40), 283–292 (1967)

    Google Scholar 

  8. Fine K.: quantifiers in modal logic. Theoria 36(3), 336–346 (1970)

    Article  Google Scholar 

  9. Fox C., Lappin S.: Foundations of Intensional Semantics. Blackwell Publishing, Hoboken (2005)

    Book  Google Scholar 

  10. Hermes, H., Term Logic with Choice Operator, Springer, Berlin, 1970, English version of Eine Termlogik mit Auswahloperator, Springer, Berlin, 1965.

  11. Hughes G.E., Cresswell M.J.: A new Introduction to Modal Logic. Routledge, London (1996)

    Book  Google Scholar 

  12. Ishii, T., Propositional calculus with identity. Bulletin of the Section of Logic 27/3:96–104, 1998.

  13. Ishii, T., Propositional Calculus with Identity, Dissertation, Japan Advanced Institute of Science and Technology, Nomi, 2000.

  14. Lewitzka S.: ∈ I : an intuitionistic logic without Fregean axiom and with predicates for truth and falsity. Notre Dame Journal of Formal Logic 50(3), 275–301 (2009)

    Article  Google Scholar 

  15. Lewitzka S.: ∈ K : a non-Fregean logic of explicit knowledge. Studia Logica 97(2), 233–264 (2011)

    Article  Google Scholar 

  16. Lewitzka S.: Construction of a canonical model for a first-order non-Fregean logic with a connective for reference and a total truth predicate. The Logic Journal of the IGPL 20(6), 1083–1109 (2012)

    Article  Google Scholar 

  17. Pollard C.: Hyperintensions. Journal of Logic and Computation 18(2), 257–282 (2008)

    Article  Google Scholar 

  18. Rautenberg, W., Einführung in die Mathematische Logik, 3rd edn., Vieweg+Teubner, 2008, (English version A Concise Introduction to Mathematical Logic, 3rd edn., Springer, New York, 2009).

  19. Sträter, W., ∈ T Eine Logik erster Stufe mit Selbstreferenz und totalem Wahrheitsprädikat, Dissertation, KIT-Report 98, Technische Universität Berlin, 1992.

  20. Suszko R.: Ontology in the tractatus of L. Wittgenstein, Notre Dame Journal of Formal Logic 9, 7–33 (1968)

    Article  Google Scholar 

  21. Suszko R.: connective and modality. Studia Logica 27, 7–39 (1971)

    Article  Google Scholar 

  22. Suszko, R., Abolition of the Fregean axiom, in R. Parikh (ed.), Logic Colloquium, vol. 453 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 169–239,1975.

  23. Wójcicki R., Suszko’s R.: situational semantics.. Studia Logica 43, 323–340 (1984)

    Article  Google Scholar 

  24. Zeitz, P., Parametrisierte T-Logik—eine Theorie der Erweiterung abstrakter Logiken um die Konzepte Wahrheit, Referenz und klassische Negation, Dissertation, Logos Verlag Berlin, 2000.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Lewitzka.

Additional information

Presented by Heinrich Wansing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewitzka, S. Denotational Semantics for Modal Systems S3–S5 Extended by Axioms for Propositional Quantifiers and Identity. Stud Logica 103, 507–544 (2015). https://doi.org/10.1007/s11225-014-9577-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-014-9577-9

Keywords

Navigation