Skip to main content
Log in

Sahlqvist Correspondence for Modal mu-calculus

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

We define analogues of modal Sahlqvist formulas for the modal mu-calculus, and prove a correspondence theorem for them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balbiani, P., V. Shehtman, and I. Shapirovsky, ‘Every world can see a Sahlqvist world’, in G. Governatori, I. Hodkinson, and Y. Venema, (eds.), Proc. Advances in Modal Logic, College Publications, 2006, pp. 69–85.

  • Benthem J.: ‘A note on modal formulas and relational properties’. Journal of Symbolic Logic 40(1), 55–58 (1975)

    Article  Google Scholar 

  • van Benthem J.: Modal logic and classical logic. Bibliopolis, Naples (1985)

    Google Scholar 

  • van Benthem J.: ‘Minimal predicates, fixed-points, and definability’. J. Symbolic Logic 70, 696–712 (2005)

    Article  Google Scholar 

  • van Benthem J.: ‘Modal frame correspondences and fixed-points’. Studia Logica 83, 133–155 (2006)

    Article  Google Scholar 

  • Bezhanishvili N., I. Hodkinson, ‘Sahlqvist theorem for modal fixed point logic’, 2010. Submitted.

  • Blackburn, P., M. de Rijke, and Y. Venema, Modal logic, Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge, UK, 2001.

  • ten Cate B., Marx M., Viana P.: ‘Hybrid logics with Sahlqvist axioms’. Logic J. IGPL 13, 293–300 (2005)

    Article  Google Scholar 

  • Conradie W., Goranko V., Vakarelov D.: ‘Algorithmic correspondence and completeness in modal logic V: recursive extensions of SQEMA’. J. Applied Logic 8, 319–333 (2010)

    Article  Google Scholar 

  • Doherty P., Łukaszewicz W., Szałas A.: ‘Computing circumscription revisited: A reduction algorithm’. J. Automated Reasoning 18, 297–336 (1997)

    Article  Google Scholar 

  • Ebbinghaus H-D., J. Flum, Finite model theory, 2nd edn., Perspectives in mathematical logic, Springer-Verlag, New York, 1999.

  • Esakia L.L.: ‘Topological Kripke models’. Soviet Math. Dokl. 15, 147–151 (1974)

    Google Scholar 

  • Fontaine G., Modal fixpoint logic: some model theoretic questions, Ph.D. thesis, ILLC, Amsterdam, 2010. ILLC Dissertation Series DS-2010-09.

  • Gabbay, D. M., and H-J. Ohlbach, ‘Quantifier elimination in second-order predicate logic’, in B. Nebel, C. Rich, and W. Swartout, (eds.), Principles of Knowledge Representation and Reasoning (KR92), Morgan Kaufmann, 1992, pp. 425–435.

  • Givant S., Venema Y.: ‘The preservation of Sahlqvist equations in completions of Boolean algebras with operators’. Algebra Universalis 41, 47–84 (1999)

    Article  Google Scholar 

  • Goldblatt R., Hodkinson I.: ‘The McKinsey–Lemmon logic is barely canonical’. Australasian J. Logic 5, 1–19 (2007)

    Google Scholar 

  • Goranko, V., and M. Otto, ‘Model theory of modal logic’, in P. Blackburn, J. van Benthem, and F. Wolter, (eds.), Handbook of Modal Logic, Elsevier, Amsterdam, 2006, pp. 249–329.

  • Goranko V., Vakarelov D.: ‘Elementary canonical formulae: extending Sahlqvist’s theorem’. Ann. Pure. Appl. Logic 141, 180–217 (2006)

    Article  Google Scholar 

  • Grädel E., ‘The decidability of guarded fixed point logic’, in J. Gerbrandy, M. Marx, M. de Rijke, and Y. Venema, (eds.), JFAK. Essays Dedicated to Johan van Benthem on the Occasion of his 50th Birthday, Vossiuspers, Amsterdam University Press, Amsterdam, 1999. CD-ROM, ISBN 90 5629 104 1.

  • Kracht, M., ‘How completeness and correspondence theory got married’, in M. de Rijke, (ed.), Diamonds and Defaults, Kluwer Academic Publishers, 1993, pp. 175–214.

  • Nonnengart, A., and A. Szałas, ‘A fixpoint approach to second-order quantifier elimination with applications to correspondence theory’, in E. Orłowska, (ed.), Logic at Work: Essays Dedicated to the Memory of Helena Rasiowa, vol. 24 of Studies in Fuzziness and Soft Computing, Physica-Verlag, 1999, pp. 307–328.

  • Sahlqvist, H., ‘Completeness and correspondence in the first and second order semantics for modal logic’, in S. Kanger, (ed.), Proc. 3rd Scandinavian logic symposium, Uppsala, 1973, North Holland, Amsterdam, 1975, pp. 110–143.

  • Sambin G., Vaccaro V.: ‘A new proof of Sahlqvist’s theorem on modal definability and completeness’. J. Symbolic Logic 54, 992–999 (1989)

    Article  Google Scholar 

  • Tarski A.: ‘A lattice-theoretical fixpoint theorem and its applications’. Pacific Journal of Mathematics 5, 285–309 (1955)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Hodkinson.

Additional information

In memoriam Leo Esakia

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Benthem, J., Bezhanishvili, N. & Hodkinson, I. Sahlqvist Correspondence for Modal mu-calculus. Stud Logica 100, 31–60 (2012). https://doi.org/10.1007/s11225-012-9388-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-012-9388-9

Keywords

Navigation