Skip to main content
Log in

Theoretical investigation and reconsideration of intramolecular proton-transfer-induced the twisted charge-transfer for the fluorescent sensor to detect the aluminum ion

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A Schiff base compound 6-amino-5-(((2-hydroxynaphthalen-1-yl)methylene)amino)-2-mercaptopyrimidin-4-ol (AHM) in acetonitrile solvent is found to show “OFF–ON type” mode upon addition of Al3+ ion and successfully applied for selective recognition of Al3+ ion. In this work, the reconsideration of excited state intramolecular proton transfer (ESIPT) and twisted intramolecular charge transfer (TICT) has been explored in detail based on density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. In the absence of Al3+, the lone pair electrons are transferred from –C = N to –OH forming a hydrogen-bonding configuration, and AHM shows weak fluorescence. When AHM is coordinated with metal ion, the TICT state is eliminated, and emission is significantly enhanced. Thus, in this paper, the origination of the non-emissive behavior of AHM has been explained in detail. The frontier molecular orbitals (MOs) and hole-electrons are used to analyze the charge distribution, providing strong evidence for the possibility of ESIPT and TICT processes occurring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140. https://doi.org/10.1016/j.jtemb.2005.02.010

    Article  CAS  PubMed  Google Scholar 

  2. Aron AT, Ramos-Torres KM, Cotruvo JA Jr et al (2015) Recognition-and reactivity-based fluorescent probes for studying transition metal signaling in living systems. Acc Chem Res 48:2434–2442. https://doi.org/10.1021/acs.accounts.5b00221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sorenson JR, Campbell IR, Tepper LB et al (1974) Aluminum in the environment and human health. Environ Health Perspect 8:3–95. https://doi.org/10.1289/ehp.7483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Litov RE, Sickles VS, Chan GM et al (1989) Plasma aluminum measurements in term infants fed human milk or a soy-based infant formula. Pediatrics 84:1105–1107

    Article  CAS  Google Scholar 

  5. Yokel RA, Hicks CL, Florence RL (2008) Aluminum bioavailability from basic sodium aluminum phosphate, an approved food additive emulsifying agent, incorporated in cheese. Food Chem Toxicol 46:2261–2266. https://doi.org/10.1016/j.fct.2008.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Soni MG, White SM, Flamm WG et al (2001) Safety evaluation of dietary aluminum. Regul Toxicol Pharm 33:66–79. https://doi.org/10.1006/rtph.2000.1441

    Article  CAS  Google Scholar 

  7. Doherty RE (2000) A history of the production and use of carbon tetrachloride, tetrachloroethylene, trichloroethylene and 1, 1, 1-trichloroethane in the United States: part 2–trichloroethylene and 1, 1, 1-trichloroethane. Environ Forensics 1:83–93. https://doi.org/10.1006/enfo.2000.0011

    Article  CAS  Google Scholar 

  8. House E, Esiri M, Forster G et al (2012) Aluminium, iron and copper in human brain tissues donated to the medical research council’s cognitive function and ageing study. Metallomics 4:56–65. https://doi.org/10.1039/c1mt00139f

    Article  CAS  PubMed  Google Scholar 

  9. Mirza A, King A, Troakes C et al (2017) Aluminium in brain tissue in familial Alzheimer’s disease. J Trace Elem Med Biol 40:30–36. https://doi.org/10.1016/j.jtemb.2016.12.001

    Article  CAS  PubMed  Google Scholar 

  10. Nayak P (2002) Aluminum: impacts and disease. Environ Res 89:101–115. https://doi.org/10.1006/enrs.2002.4352

    Article  CAS  PubMed  Google Scholar 

  11. Good PF, Olanow C, Perl DP (1992) Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: a LAMMA study. Brain Res 593:343–346. https://doi.org/10.1016/0006-8993(92)91334-b

    Article  CAS  PubMed  Google Scholar 

  12. Yumoto S, Kakimi S, Ishikawa A (2009) Demonstration of aluminum in amyloid fibers in the cores of senile plaques in the brains of patients with Alzheimer’s disease. J Inorg Biochem 103:1579–1584. https://doi.org/10.1016/j.jinorgbio.2009.07.023

    Article  CAS  PubMed  Google Scholar 

  13. Rondeau V, Jacqmin-Gadda H, Commenges D et al (2009) Amuminum and silica in darking water and the risk of Alzheimer’s disease or cognitive decline: findings from 15-year follow-up of the PAQUID cohort. Am J Epidemiol 169:489–496. https://doi.org/10.1093/aje/kwn348

    Article  PubMed  Google Scholar 

  14. Sahana A, Banerjee A, Das S et al (2011) A naphthalene-based Al3+ selective fluorescent sensor forliving cell imaging. Org Biomol Chem 9:5523–5529. https://doi.org/10.1039/c1ob05479a

    Article  CAS  PubMed  Google Scholar 

  15. Zhao Q, Li F, Huang C (2010) Phosphorescent chemosensors based on heavy-metal complexes. Chem Soc Rev 39:3007–3030. https://doi.org/10.1039/b915340c

    Article  CAS  PubMed  Google Scholar 

  16. Zhang JF, Zhou Y, Yoon J et al (2011) Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chem Soc Rev 40:3416–3429. https://doi.org/10.1039/c1cs15028f

    Article  CAS  PubMed  Google Scholar 

  17. Kaur K, Saini R, Kumar A et al (2012) Chemodosimeters: an approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols. Coord Chem Rev 256:1992–2028. https://doi.org/10.1016/j.ccr.2012.04.013

    Article  CAS  Google Scholar 

  18. Yang Y, Zhao Q, Feng W et al (2013) Luminescent chemodosimeters for bioimaging. Chem Rev 113:192–270. https://doi.org/10.1021/cr2004103

    Article  CAS  PubMed  Google Scholar 

  19. Schneider HJ, Yatsimirsky AK (2000) Principles and methods in supramolecular chemistry. J Wiley. https://doi.org/10.1002/9783527644131

    Article  Google Scholar 

  20. Zhang M, Yu MX, Li FY et al (2007) A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging. J Am Chem Soc 129:10322–10323. https://doi.org/10.1021/ja073140i

    Article  CAS  PubMed  Google Scholar 

  21. Zhao M, Ma L, Zhang M et al (2013) Glutamine-containing “turn-on” fluorescence sensor for the highly sensitive and selective detection of chromium (III) ion in water. J Spectrochim Acta Part A 116:460–465. https://doi.org/10.1016/j.saa.2013.07.069

    Article  CAS  Google Scholar 

  22. Wu JS, Liu MW, Zhuang XQ (2007) Fluorescence turn on of coumarin derivatives by metal cations: a new signaling mechanism based on C=N isomerization. Org Lett 9:33–36. https://doi.org/10.1021/ol062518z

    Article  CAS  PubMed  Google Scholar 

  23. Tang XL, Peng XH, Dou W et al (2008) Design of a semirigid molecule as a selective fluorescent chemosensor for recognition of Cd(II). Org Lett 10:3653–3656. https://doi.org/10.1021/ol801382f

    Article  CAS  PubMed  Google Scholar 

  24. Li L, Dang YQ, Li HW et al (2010) Integrated genomic analyses of ovarian carcinoma. Tetrahedron Lett 51:618–621. https://doi.org/10.1038/nature10166

    Article  CAS  Google Scholar 

  25. Liu YJ, Tian FF, Fan XY et al (2017) Fabrication of an acylhydrazone based fluorescence probe for Al3+. Sensors Actuators B Chem 240:916–925. https://doi.org/10.1016/j.snb.2016.09.051

    Article  CAS  Google Scholar 

  26. Upadhyay Y, Bothra S, Kumar R, Choi HJ (2017) Sahoo, S K. Optical sensing of hydrogen sulphate using rhodamine 6G hydrazide from aqueous medium. Spectrochim Acta A 180:44–50. https://doi.org/10.1016/j.saa.2017.02.057

    Article  CAS  Google Scholar 

  27. Stasiuk GJ, Minuzzi F, Sae-Heng M et al (2015) Dual-modal magnetic resonance/fluorescent zinc sensors for pancreatic β-cell mass imaging. Chem Eur J 21:5023–5033. https://doi.org/10.1002/chem.201406008

    Article  CAS  PubMed  Google Scholar 

  28. Mummidivarapu VVS, Tabbasum K, China JP et al (2012) 1,3-di-amidoquinoline conjugate of calix[4]arene(L)as a ratiometric and colorimetric sensor for Zn2+:spectroscopy, microscopy and computational studies. Dalton Trans 41:1671–1674. https://doi.org/10.1039/c2dt11900e

    Article  CAS  PubMed  Google Scholar 

  29. Yu FS, Guo XF, Tian XJ et al (2017) A ratiomeric fluorescent sensor for Zn2+ based on N, N’-Di(quinolin-8-yl)oxalamide. J Fluoresc 27:723–728. https://doi.org/10.1007/s10895-016-2003-0

    Article  CAS  PubMed  Google Scholar 

  30. Rodríguez-Córdoba W, Zugazagoitia JS, Collado-Fregoso E et al (2007) Excited state intramolecular proton transfer in schiff bases. Decay of the locally excited enol state observed by femtosecond resolved fluorescence. J Phys Chem A 111:6241–6247. https://doi.org/10.1021/jp072415d

    Article  CAS  PubMed  Google Scholar 

  31. Li W, Tian X, Huang B et al (2016) Triphenylamine-based Schiff bases as the high sensitive Al3+ or Zn2+ fluorescence turn-on probe: mechanism and application in vitro and in vivo. Biosens Bioelectron 77:530–536. https://doi.org/10.1016/j.bios.2015.09.059

    Article  CAS  PubMed  Google Scholar 

  32. Jana S, Dalapati S, Guchhait N (2012) Proton transfer assisted charge transfer phenomena in photochromic schiff bases and effect of–NEt2 groups to the Anil Schiff bases. J Phys Chem A 116:10948–10958. https://doi.org/10.1021/jp3079698

    Article  CAS  PubMed  Google Scholar 

  33. Fang TC, Tsai HY, Luo MH et al (2013) Excited-state charge coupled proton transfer reaction via the dipolar functionality of Salicylideneaniline. Chin Chem Lett 24:145–148. https://doi.org/10.1016/j.cclet.2013.01.011

    Article  CAS  Google Scholar 

  34. Yadav N, Singh AK (2018) A turn-on ESIPT based fluorescent sensor for detection of aluminum ion with bacterial cell imaging and logic gate applications. Mater Sci Eng C 90:468–475. https://doi.org/10.1016/j.msec.2018.04.087

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Revision C.01. Gaussian Inc. Wallingford CT

  36. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. https://doi.org/10.1103/physreva.38.3098

    Article  CAS  Google Scholar 

  37. Schafer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577. https://doi.org/10.1063/1.463096

    Article  Google Scholar 

  38. Schafer A, Huber C, Ahlrichs R (1997) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835. https://doi.org/10.1063/1.467146

    Article  Google Scholar 

  39. Cances E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041. https://doi.org/10.1063/1.474659

    Article  CAS  Google Scholar 

  40. Liu ZY, Lu T, Chen QX (2020) An sp-hybridized all-carboatomic ring, cyclo[18]carbon: electronic structure, electronic spectrum, and optical nonlinearity. Carbon 165:461–467. https://doi.org/10.1016/j.carbon.2020.05.023

    Article  CAS  Google Scholar 

  41. Le Bahers T, Adamo C, Ciofini I (2011) A qualitative index of spatial extent in charge-transfer excitations. J Chem Theory Comput 7:2498–2506. https://doi.org/10.1021/ct200308m

    Article  CAS  PubMed  Google Scholar 

  42. Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  43. Johnson ER, Keinan S, Sanchez PM et al (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506. https://doi.org/10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mayer I (1983) Charge, bond order and valence in the AB initio SCF theory. Chem Phys Lett 97:270–274. https://doi.org/10.1016/0009-2614(83)80005-0

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Open Project of SKLMRD (the open fund of the state key laboratory of molecular reaction dynamics in DICP, CAS), the General Program from Education department of Liaoning Province (Grant LJKZ0534) and Basis Research Project of Department of Education of Liaoning Province (Grant J2019020).

Author information

Authors and Affiliations

Authors

Contributions

Xiumin Liu performed data collection, analysis, and writing. Hengwei Zhang performed data collection and analysis. Sen Liu performed data analysis. Yi Wang performed the study’s conception, design, data collection, analysis, writing, editing, review, and supervision. Peng Zhang performed the study’s conception, editing, review, and supervision.

Corresponding authors

Correspondence to Yi Wang or Peng Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, H., Liu, S. et al. Theoretical investigation and reconsideration of intramolecular proton-transfer-induced the twisted charge-transfer for the fluorescent sensor to detect the aluminum ion. Struct Chem 33, 1355–1364 (2022). https://doi.org/10.1007/s11224-022-01941-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01941-z

Keywords

Navigation