Skip to main content
Log in

Formaldehyde adsorption on the interior and exterior surfaces of CN nanotubes

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Using density functional theory, we have investigated the adsorption of formaldehyde (H2CO) on the interior and exterior walls of a carbon nitride nanotube (CNNT) in terms of energetic, geometric, and electronic properties. It was found that the adsorption is more preferential on the exterior surface of the tube with maximum adsorption energy of −7.4 kcal/mol. It has also been found that the adsorption energy per molecule is increased by increasing the number of adsorbed molecules. The results reveal that the electronic properties of CNNT are very sensitive to the presence of formaldehyde so that the HOMO/LUMO gap is reduced from 4.02 eV in the free tube to 2.44 eV in the most stable configuration of 3H2CO/CNNT complex. Also, we have showed that the response of the tube may depend on concentration of the H2CO molecules, suggesting that the CNNT might produce an electrical signal in the presence of H2CO molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ayers GP, Gillett RW, Granek H, Deserves C, Cox RA (1997) Geophys Res Lett 24:401

    Article  CAS  Google Scholar 

  2. Dingle P, Franklin P (2002) Ind Built Environ 11:111

    CAS  Google Scholar 

  3. Mine Y, Melander N, Richter D, Lancaster DG, Petrov KP, Tittel FK (1997) Appl Phys B 65:771

    Article  CAS  Google Scholar 

  4. Beheshtian J, Peyghan AA, Bagheri Z (2012) Sens Actuators B Chem 171–172:846

    Article  Google Scholar 

  5. Hamadanian M, Khoshnevisan B, Fotooh F (2011) Struct Chem 22:1205

    Article  CAS  Google Scholar 

  6. Beheshtian J, Baei MT, Bagheri Z, Peyghan AA (2012) Microelectron J 43:452

    Article  CAS  Google Scholar 

  7. Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A (2012) Struct Chem 23:653

    Article  CAS  Google Scholar 

  8. Ahmadi A, Kamfiroozi M, Beheshtian J, Hadipour N (2011) Struct Chem 22:1261

    Article  CAS  Google Scholar 

  9. Ahmadi Peyghan A, Omidvar A, Hadipour NL, Bagheri Z, Kamfiroozi M (2012) Physica E 44:1357

    Article  Google Scholar 

  10. Turabekova MA, Dinadayalane TC, Leszczynsk D, Leszczynski J (2012) J Phys Chem C 116:6012

    Article  CAS  Google Scholar 

  11. Saha S, Dinadayalane TC, Leszczynska D, Leszczynski J (2012) Chem Phys Lett 541:85

    Article  CAS  Google Scholar 

  12. Saha S, Dinadayalane TC, Murray JS, Leszczynska D, Leszczynski J (2012) J Phys Chem C 116:22399

    Article  CAS  Google Scholar 

  13. Goldoni A, Larciprete R, Petaccia L, Lizzit S (2003) J Am Chem Soc 125:11329

    Article  CAS  Google Scholar 

  14. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Science 287:1801

    Article  CAS  Google Scholar 

  15. Burghard M (2005) Surf Sci Rep 58:1

    CAS  Google Scholar 

  16. Sun XH, Li CP, Wong WK, Wong NB, Lee CS, Lee ST, Teo BK (2002) J Am Chem Soc 124:14464

    Article  CAS  Google Scholar 

  17. Zhang P, Crespi VH (2002) Phys Rev Lett 89:56403

    Article  Google Scholar 

  18. Sorokin PB, Fedorov AS, Chernozatonskii LA (2006) Phys Solid State 48:398

    Article  CAS  Google Scholar 

  19. Beheshtian J, Soleymanabadi H, Kamfiroozi M, Ahmadi A (2012) J Mol Model 18:2343

    Article  CAS  Google Scholar 

  20. Beheshtian J, Ahmadi Peyghan A, Bagheri Z (2012) Physica E 44:1963

    Article  CAS  Google Scholar 

  21. Baei MT, Peyghan AA, Bagheri Z (2012) Struct Chem. doi:10.1007/s11224-012-0129-5

  22. Neidhardt J, Hultman L (2007) J Vac Sci Technol A 25:633

    Article  CAS  Google Scholar 

  23. Kroke E, Schwarz M (2004) Coord Chem Rev 248:493

    Article  CAS  Google Scholar 

  24. Cao C, Huang F, Cao C, Li J, Zhm H (2004) Chem Mater 16:5213

    Article  CAS  Google Scholar 

  25. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  26. Oku T, Kuno M, Narita I (2004) J Phys Chem Solids 65:549

    Article  CAS  Google Scholar 

  27. Erdogan R, Ozbek O, Onal I (2010) Surf Sci 604:1029

    Article  CAS  Google Scholar 

  28. Tetasang S, Keawwangchai S, Wanno B, Ruangpornvisuti V (2012) Struct Chem 23:7

    Article  CAS  Google Scholar 

  29. Contreras M, Avila D, Alvarez J, Rozas R (2010) Struct Chem 21:573

    Article  CAS  Google Scholar 

  30. Lawson DB, Walker A (2012) Comput Theor Chem 981:31

    Article  CAS  Google Scholar 

  31. Beheshtian J, Kamfiroozi M, Bagheri Z, Ahmadi A (2012) Comput Mater Sci 54:115

    Article  CAS  Google Scholar 

  32. Beheshtian J, Kamfiroozi M, Bagheri Z, Peyghan AA (2012) Chin J Chem Phys 25:60

    Article  CAS  Google Scholar 

  33. Olmsted J, Williams GM (1997) Chemistry: the molecular science. WCB, Iowa

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ahmadi Peyghan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beheshtian, J., Peyghan, A.A. & Bagheri, Z. Formaldehyde adsorption on the interior and exterior surfaces of CN nanotubes. Struct Chem 24, 1331–1337 (2013). https://doi.org/10.1007/s11224-012-0172-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0172-2

Keywords

Navigation