Skip to main content
Log in

Co-clustering of evolving count matrices with the dynamic latent block model: application to pharmacovigilance

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

The simultaneous clustering of observations and features of datasets (known as co-clustering) has recently emerged as a central topic in machine learning applications. However, most models focus on continuous data in stationary scenarios, where cluster assignments do not evolve over time. We propose in this paper the dynamic latent block model (dLBM), which extends the classical binary latent block model, making amenable such analysis to dynamic cases where data are counts. Our approach operates on temporal count matrices allowing to detect abrupt changes in the way existing clusters interact with each other. The time breaks detection is performed through clustering of time instants that allows for better model parsimony. The time-dependent counting data are modeled via non-homogeneous Poisson processes (HHPPs), conditionally to the latent variables. In order to handle the model inference, we rely on a SEM-Gibbs algorithm and the ICL criterion is used for model selection. Numerical experiments on simulated data highlight the main features of the proposed approach and show the interest of dLBM with respect to related works. An application to adverse drug reaction in pharmacovigilance is also proposed, where dLBM was able to recognize clusters in a meaningful way that identified safety events that were consistent with retrospective knowledge. Hence, our aim is to propose this dynamic co-clustering method as a tool for automatic safety signal detection, to support medical authorities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. https://signalement.social-sante.gouv.fr.

  2. https://www.ansm.sante.fr/Dossiers/Mediator-R/Mediator-R-et-accompagnement-des-personnes/(offset)/0.

References

  • Bergé, L.R., Bouveyron, C., Corneli, M., Latouche, P.: The latent topic block model for the co-clustering of textual interaction data. Comput. Stat. Data Anal. 137, 247–270 (2019)

    Article  MathSciNet  Google Scholar 

  • Biernacki, C., Celeux, G., Govaert, G.: Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pat. Anal. Mach. Intell. 22(7), 719–725 (2000)

    Article  Google Scholar 

  • Boutalbi, R., Labiod, L., Nadif, M.: Tensor latent block model for co-clustering. Int. J. Data Sci. Anal. 10(2), 1–15 (2020)

    Article  Google Scholar 

  • Bouveyron, C., Bozzi, L., Jacques, J., Jollois, F.-X.: The functional latent block model for the co-clustering of electricity consumption curves. J. Royal Stat. Soc.: Ser. C (Appl. Stat.) 67(4), 897–915 (2018)

    MathSciNet  Google Scholar 

  • Bouveyron, C., Celeux, G., Murphy, T.B., Raftery, A.E.: Model-Based Clustering and Classification for Data Science: With Applications in R, vol. 50. Cambridge University Press (2019)

  • Cheng, K.-O., Law, N.-F., Siu, W.-C., Liew, A.W.-C.: Identification of coherent patterns in gene expression data using an efficient biclustering algorithm and parallel coordinate visualization. BMC Bioinf. 9(1), 210 (2008)

    Article  Google Scholar 

  • Côme, E., Latouche, P.: Model selection and clustering in stochastic block models based on the exact integrated complete data likelihood. Stat. Model. 15(6), 564–589 (2015)

    Article  MathSciNet  Google Scholar 

  • Corneli, M., Latouche, P., Rossi, F.: Block modelling in dynamic networks with non-homogeneous poisson processes and exact ICL. Soci. Netw. Anal. Min. 6(1), 55 (2016)

    Article  Google Scholar 

  • Corneli, M., Bouveyron, C., Latouche, P., Rossi, F.: The dynamic stochastic topic block model for dynamic networks with textual edges. Stat. Comput. (2018). https://doi.org/10.1007/s11222-018-9832-4

    Article  MATH  Google Scholar 

  • Corneli, M., Bouveyron, C., Latouche, P.: Co-clustering of ordinal data via latent continuous random variables and not missing at random entries. J. Comput. Graph. Stat. 29(4), 771–785 (2020)

    Article  MathSciNet  Google Scholar 

  • Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22 (1977)

    MathSciNet  MATH  Google Scholar 

  • Deodhar, M., Ghosh, J.: Scoal: A framework for simultaneous co-clustering and learning from complex data. ACM Trans. Knowl. Discov. from Data (TKDD) 4(3), 1–31 (2010)

    Article  Google Scholar 

  • Dhillon, I. S.: Co-clustering documents and words using bipartite spectral graph partitioning. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 269–274 (2001)

  • Dhillon, I.S., Mallela, S., Kumar, R.: A divisive information-theoretic feature clustering algorithm for text classification. Journal of machine learning research 3(Mar), 1265–1287 (2003a)

  • Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 89–98 (2003b)

  • Ding, C., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix t-factorizations for clustering. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 126–135 (2006)

  • George, T., Merugu, S.: A scalable collaborative filtering framework based on co-clustering. In: Fifth IEEE International Conference on Data Mining (ICDM‘05), p. 4 (2005)

  • Govaert, G., Nadif, M.: Clustering with block mixture models. Patt. Recognit. 36(2), 463–473 (2003)

    Article  Google Scholar 

  • Govaert, G., Nadif, M.: Block clustering with bernoulli mixture models: comparison of different approaches. Comput. Stat. Data Anal. 52(6), 3233–3245 (2008)

    Article  MathSciNet  Google Scholar 

  • Govaert, G., Nadif, M.: Latent block model for contingency table. Commun. Stat.: Theory Methods 39(3), 416–425 (2010)

    Article  MathSciNet  Google Scholar 

  • Green, N., Rege, M., Liu, X., Bailey, R.: Evolutionary spectral co-clustering. In: The 2011 International Joint Conference on Neural Networks, IEEE, pp. 1074–1081 (2011)

  • Hanisch, D., Zien, A., Zimmer, R., Lengauer, T.: Co-clustering of biological networks and gene expression data. Bioinformatics 18(suppl–1), S145–S154 (2002)

    Article  Google Scholar 

  • Jacques, J., Biernacki, C.: Model-based co-clustering for ordinal data. Comput. Stat. Data Anal. 123, 101–115 (2018)

    Article  MathSciNet  Google Scholar 

  • Keribin, C., Govaert, G., Celeux, G.: Estimation d’un modèle à blocs latents par l’algorithme SEM (2010)

  • Keribin, C., Brault, V., Celeux, G., Govaert, G., et al.: Model selection for the binary latent block model. In: Proceedings of COMPSTAT, vol. 2012 (2012)

  • Keribin, C., Brault, V., Celeux, G., Govaert, G.: Estimation and selection for the latent block model on categorical data. Stat. Comput. 25(6), 1201–1216 (2015)

    Article  MathSciNet  Google Scholar 

  • Keribin, C., Celeux, G., Robert, V.: The latent block model: a useful model for high dimensional data. In: ISI 2017—61st World Statistics Congress, Marrakech, Morocco, pp. 1–6, (2017)https://hal.inria.fr/hal-01658589

  • Labiod, L., Nadif, M.: Co-clustering under nonnegative matrix tri-factorization. In: International Conference on Neural Information Processing, Springer, pp. 709–717 (2011)

  • Langlade, C., Gouverneur, A., Bosco-Lévy, P., Gouraud, A., Prault-Pochat, M.-C., Béné, J., Miremont-Salamé, G., Pariente, A., of Pharmacovigilance Centres F. N.: Adverse events reported for Mirena levonorgestrel-releasing intrauterine device in France and impact of media coverage. Br. J. Clin. Pharmacol. 85(9), 2126–2133

  • Lomet, A.: Sélection de modèle pour la classification croisée de données continues. PhD thesis, Compiègne (2012)

  • Matias, C., Rebafka, T., Villers, F.: A semiparametric extension of the stochastic block model for longitudinal networks. Biometrika 105(3), 665–680 (2018)

    Article  MathSciNet  Google Scholar 

  • Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  • Robert, V., Celeux, G., Keribin, C.: Un modèle statistique pour la pharmacovigilance. In: 47èmes Journées de Statistique de la SFdS, Lille, France, (2015) https://hal.inria.fr/hal-01255701

  • Robert, V., Vasseur, Y., Brault, V.: Comparing high-dimensional partitions with the co-clustering adjusted rand index. J. Classif. 38(1), 158–186 (2020)

    Article  MathSciNet  Google Scholar 

  • Viard, D., Parassol-Girard, N., Romani, S., Van Obberghen, E., Rocher, F., Berriri, S., Drici, M.-D.: Spontaneous adverse event notifications by patients subsequent to the marketing of a new formulation of levothyrox® amidst a drug media crisis: atypical profile as compared with other drugs. Fundam. Clin. Pharmacol. 33(4), 463–470 (2019)

    Article  Google Scholar 

  • Wang, P., Domeniconi, C., Laskey, K.B.: Latent dirichlet bayesian co-clustering. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, pp. 522–537 (2009)

  • Wyse, J., Friel, N.: Block clustering with collapsed latent block models. Stat. Comput. 22(2), 415–428 (2012)

    Article  MathSciNet  Google Scholar 

  • Wyse, J., Friel, N., Latouche, P.: Inferring structure in bipartite networks using the latent blockmodel and exact ICL. Netw. Sci. 5(1), 45–69 (2017)

    Article  Google Scholar 

  • Xu, B., Bu, J., Chen, C., Cai, D.: An exploration of improving collaborative recommender systems via user-item subgroups. In: Proceedings of the 21st International Conference on World Wide Web, pp. 21–30 (2012)

Download references

Acknowledgements

This work has been supported by the French government, through the 3IA Côte d’Azur, Investment in the Future, project managed by the National Research Agency (ANR) with the reference number ANR-19-P3IA-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Marchello.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Estimation of the mixture proportions

The proof about how to obtain the updated mixture proportions is only shown for the estimation of parameter \(\gamma _{k}^{(h+1)}\) because for the estimation of the other parameters, \(\rho \) and \(\delta \), the procedure is similar:

$$\begin{aligned}&p(Z|\gamma )=\mathcal {L}(\gamma ;Z)=N! \prod _{i=1}^{N}\prod _{k=1}^{K}\frac{\gamma _{k}}{z_{ik}!};\\&\ell (\gamma _{k};z_{ik}^{(h+1)})=\log \mathcal {L}(\gamma _{k},z_{ik}^{(h+1)})=\log \left( N!\prod _{i=1}^{N}\prod _{k=1}^{K}\frac{\gamma _{k}}{z_{ik}^{(h+1)}!}\right) \\&\quad =\log N!+\sum _{i=1}^{N}\sum _{k=1}^{K}z_{ik}^{(h+1)}\log \gamma _{k}-\sum _{i=1}^{N}\sum _{k=1}^{K}\log z_{ik}^{(h+1)}! \end{aligned}$$

the procedure is similar: this quantity, we employ the Lagrange Multipliers, taking into account the constraint \( \sum _{k=1}^{K}\gamma _{k}=1\).

$$\begin{aligned}&\mathcal {L}(\gamma _{k};\lambda )=\ell (\gamma _{k};z_{ik}^{(h+1)})+\lambda \left( 1-\sum _{k=1}^{K}\gamma _{k}\right) \\&\frac{\partial \mathcal {L}(\gamma _{k};\lambda )}{\partial \gamma _{k}}=\frac{\partial \ell (\gamma _{k};z_{ik}^{(h+1)})}{\partial \gamma _{k}}+\frac{\partial \lambda (1-\sum _{k}\gamma _{k})}{\partial \gamma _{k}}=0\\&\frac{\partial \sum _{i=1}^{N}\sum _{k=1}^{K}z_{ik}^{(h+1)}\log \gamma _{k}}{\partial \gamma _{k}}-\lambda \frac{\partial \sum _{k=1}^{K}\gamma _{k}}{\partial \gamma _{k}}=0\\&\frac{\sum _{i=1}^{N}z_{ik}^{(h+1)}}{\gamma _{k}}-\lambda =0\\&\sum _{i=1}^{N}z_{ik}^{(h+1)}=\lambda \gamma _{k}\Rightarrow \frac{\sum _{i=1}^{N}z_{ik}^{(h+1)}}{\lambda }=\gamma _{k} \end{aligned}$$

Since \(\lambda \) is equal to N:

\(\sum _{k{=}1}^{K}\sum _{i{=}1}^{N}\frac{z_{ik}^{(h{+}1)}}{\lambda }{=}\sum _{k{=}1}^{K}\gamma _{k}\Rightarrow \frac{1}{\lambda }\sum _{k{=}1}^{K}\sum _{i{=}1}^{N}z_{ik}^{(h{+}1)}{=}1\);

we can conclude that the estimation of \(\gamma _{k}^{(h+1)}\)is the following:

$$\begin{aligned} \gamma _{k}^{(h+1)}=\frac{1}{N}\sum _{i=1}^{N}z_{ik}^{(h+1)} \end{aligned}$$

Maximum likelihood estimator of \(\lambda _{k\ell c}\)

The maximum likelihood estimator of \(\lambda _{k\ell c}\) is obtained through the following process:

$$\begin{aligned}&\log L(\lambda |X,Z,W,S)\\&\quad =\sum _{k=1}^{K}\sum _{\ell {=}1}^{L}\sum _{c=1}^{C}(R_{k\ell c}\log \lambda _{k\ell c}{-}|\mathcal {A}_{k}||\mathcal {B}_{\ell }||\mathcal {D}_{c}|\lambda _{k\ell c}{+}c) \end{aligned}$$

where c is a constant that includes all the terms that does not depend on \(\lambda \).

$$\begin{aligned}&\frac{\partial \log \mathcal {L}(\lambda |X,Z,W,S)}{\partial \lambda }\\&\quad =\frac{R_{k\ell c}}{\lambda _{k\ell c}}-|\mathcal {A}_{k}||\mathcal {B}_{\ell }||\mathcal {D}_{c}|\\&\quad =0\Rightarrow \widehat{\lambda }_{k\ell c}=\frac{R_{k\ell c}}{|\mathcal {A}_{k}||\mathcal {B}_{\ell }||\mathcal {D}_{c}|} \end{aligned}$$

Intensity functions in the three scenarios

From Table 4, the scenarios “Easy” and “Medium” may look the same. However, the main difference between the two scenarios is the value assumed by the intensity function \(\lambda \). The values of this parameter in the three different scenarios are:

Fig. 16
figure 16

Representation of the interactivity patterns between drugs and adversarial effects at any given time interval. A small sample of the whole data set is considered

  • Scenario A—Easy: \(\lambda =\varLambda _{A}\)\(\varLambda _{A}[,,1]=\begin{bmatrix}50 &{} 18\\ 1 &{} 1\\ 1 &{} 50 \end{bmatrix}\); \(\varLambda _{A}[,,2]=\begin{bmatrix}50 &{} 50\\ 18 &{} 1\\ 1 &{} 18 \end{bmatrix}\)

  • Scenario B—Medium: \(\lambda =\varLambda _{B}\)\(\varLambda _{B}[,,1]=\begin{bmatrix}1 &{} 1\\ 1 &{} 7\\ 7 &{} 20 \end{bmatrix}\); \(\varLambda _{B}[,,2]=\begin{bmatrix}20 &{} 20\\ 7 &{} 1\\ 1 &{} 7 \end{bmatrix}\)

  • Scenario C—Hard: \(\lambda =\varLambda _{C}\)\(\varLambda _{C}[,,1]=\begin{bmatrix}70 &{} 12 &{} 1\\ 35 &{} 1 &{} 35\\ 1 &{} 70 &{} 12\\ 12 &{} 35 &{} 70 \end{bmatrix}\); \(\varLambda _{C}[,,2]=\begin{bmatrix}35 &{} 70 &{} 12\\ 70 &{} 70 &{} 70\\ 12 &{} 1 &{} 35\\ 1 &{} 70 &{} 1 \end{bmatrix}\); \(\varLambda _{C}[,,3]=\begin{bmatrix}12 &{} 70 &{} 35\\ 35 &{} 12 &{} 70\\ 70 &{} 35 &{} 12\\ 12 &{} 1 &{} 35 \end{bmatrix}\)

  • Scenario D—Row_LBM: \(\lambda =\varLambda _{D}\)\(\varLambda _{D}[,,1] = \begin{bmatrix}1&6&4 \end{bmatrix}\); \(\varLambda _{D}[,,2] = \begin{bmatrix} 1&7&1 \end{bmatrix}\)

Data structure representation

Figure 16 shows a representation of the interactivity patterns between all the drugs and adversarial effects at any given time interval. Each panel represents a time interval, and the size and the color of the points depend on the number of declarations received.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchello, G., Fresse, A., Corneli, M. et al. Co-clustering of evolving count matrices with the dynamic latent block model: application to pharmacovigilance. Stat Comput 32, 41 (2022). https://doi.org/10.1007/s11222-022-10098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11222-022-10098-y

Keywords

Navigation