Skip to main content
Log in

Sparse functional partial least squares regression with a locally sparse slope function

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

The partial least squares approach has been particularly successful in spectrometric prediction in chemometrics. By treating the spectral data as realizations of a stochastic process, the functional partial least squares can be applied. Motivated by the spectral data collected from oriented strand board furnish, we propose a sparse version of the functional partial least squares regression. The proposed method aims at achieving locally sparse (i.e., zero on certain sub-regions) estimates for the functional partial least squares bases, and more importantly, the locally sparse estimate for the slope function. The new approach applies a functional regularization technique to each iteration step of the functional partial least squares and implements a computational method that identifies nonzero sub-regions on which the slope function is estimated. We illustrate the proposed method with simulation studies and two applications on the oriented strand board furnish data and the particulate matter emissions data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Asencio, M., G. Hooker, and H. O. Gao (2014). Functional convolution models. Statistical Modelling 14(4), 315–335

    Article  MathSciNet  Google Scholar 

  • Boulesteix, A.-L. and K. Strimmer (2006). Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Briefings in Bioinformatics 8(1), 32–44

    Article  Google Scholar 

  • Cardot, H., F. Ferraty, and P. Sarda (2003). Spline estimators for the functional linear model. Statistica Sinica 13, 571–591

    MathSciNet  MATH  Google Scholar 

  • Chun, H., Keleş, S.: Sparse partial least squares regression for simultaneous dimension reduction and variable selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72(1), 3–25 (2010)

    Article  MathSciNet  Google Scholar 

  • Clark, N., Gautam, M., Wayne, W., Lyons, D., Thompson, G., Zielinska, B.: Heavy-duty vehicle chassis dynamometer testing for emissions inventory, air quality modeling, source apportionment and air toxics emissions inventory: E55/59 all phases. Technical report, Coordinating Research Council, Alpharetta (2007)

  • Cook, R. D. and L. Forzani (2019). Partial least squares prediction in high-dimensional regression. The Annals of Statistics 47(2), 884–908

    Article  MathSciNet  Google Scholar 

  • de Boor, C.: A practical Guide to Splines. Springer-Verlag, New York (2001)

    MATH  Google Scholar 

  • Delaigle, A., Hall, P.: Achieving near perfect classification for functional data. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 74(2), 267–286 (2012)

    Article  MathSciNet  Google Scholar 

  • Delaigle, A. and P. Hall (2012b). Methodology and theory for partial least squares applied to functional data. The Annals of Statistics 40(1), 322–352

    MathSciNet  MATH  Google Scholar 

  • Escabias, M., A. M. Aguilera, and M. J. Valderrama (2007). Functional PLS logit regression model. Computational Statistics and Data Analysis 51(10), 4891–4902

    Article  MathSciNet  Google Scholar 

  • Fan, J. and R. Li (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96(456), 1348–1360

    Article  MathSciNet  Google Scholar 

  • Frank, L. E. and J. H. Friedman (1993). A statistical view of some chemometrics regression tools. Technometrics 35(2), 109–135

    Article  Google Scholar 

  • Garthwaite, P. H. (1994). An interpretation of partial least squares. Journal of the American Statistical Association 89(425), 122–127

    Article  MathSciNet  Google Scholar 

  • Guan, T., Z. Lin, and J. Cao (2020). Estimating truncated functional linear models with a nested group bridge approach. Journal of Computational and Graphical Statistics 29(3), 620–628

    Article  MathSciNet  Google Scholar 

  • Hall, P., Hooker, G.: Truncated linear models for functional data. Journal of Royal Statistical Society, Series B (Statistical Methodology) 78(3), 637–653 (2016)

    Article  MathSciNet  Google Scholar 

  • Helland, I. S. (1990). Partial least squares regression and statistical models. Scandinavian Journal of Statistics 17(2), 97–114

    MathSciNet  MATH  Google Scholar 

  • James, G. M., J. Wang, and J. Zhu (2009). Functional linear regression that’s interpretable. The Annals of Statistics 37(5A), 2083–2108

    Article  MathSciNet  Google Scholar 

  • Krämer, N. and M. Sugiyama (2011). The degrees of freedom of partial least squares regression. Journal of the American Statistical Association 106(494), 697–705

    Article  MathSciNet  Google Scholar 

  • Lin, Z., J. Cao, L. Wang, and H. Wang (2017). Locally sparse estimator for functional linear regression models. Journal of Computational and Graphical Statistics 26(2), 306–318

    Article  MathSciNet  Google Scholar 

  • Lin, Z., L. Wang, and J. Cao (2016). Interpretable functional principal component analysis. Biometrics 72, 846–854

    Article  MathSciNet  Google Scholar 

  • Martens, H., Næs, T.: Multivariate Calibration. John Wiley & Sons, New York (1992)

    MATH  Google Scholar 

  • Marx, B.D., Eilers, P.H.C.: Generalized linear regression on sampled signals and curves: A P-spline approach. Technometrics 41(1), 1–13 (1999)

    Article  Google Scholar 

  • Nie, Y., Cao, J.: Sparse functional principal component analysis in a new regression framework. Computational Statistics and Data Analysis 152, 107016 (2020)

    Article  MathSciNet  Google Scholar 

  • Nie, Y., L. Wang, B. Liu, and J. Cao (2018). Supervised functional principal component analysis. Statistics and Computing 28(3), 713–723

    Article  MathSciNet  Google Scholar 

  • Preda, C. and G. Saporta (2005). PLS regression on a stochastic process. Computational Statistics and Data Analysis 48, 149–158

    Article  MathSciNet  Google Scholar 

  • Preda, C., Saporta, G., Lévéder, C.: PLS classification of functional data. Comput. Statistics 22(2), 223–235 (2007)

    Article  MathSciNet  Google Scholar 

  • Reiss, P. T. and R. T. Ogden (2007). Functional principal component regression and functional partial least squares. Journal of the American Statistical Association 102(479), 984–996

    Article  MathSciNet  Google Scholar 

  • Sang, P., L. Wang, and J. Cao (2017). Parametric functional principal component analysis. Biometrics 73, 802–810

    Article  MathSciNet  Google Scholar 

  • Schwartz, W. R., Kembhavi, A., Harwood, D., Davis, L. S.: Human detection using partial least squares analysis. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 24–31 (2009)

  • Shi, H., J. Dong, L. Wang, and J. Cao (2021). Functional principal component analysis for longitudinal data with informative dropout. Statistics in Medicine 40, 712–724

    Article  MathSciNet  Google Scholar 

  • Wold, H.: Soft modelling by latent variables: The non-linear iterative partial least squares (NIPALS) approach. J. Appl. Probab. 12(S1), 117–142 (1975)

    Article  MathSciNet  Google Scholar 

  • Zhou, J., N.-Y. Wang, and N. Wang (2013). Functional linear model with zero-value coefficient function at sub-regions. Statistica Sinica 23, 25–50

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor, the Associate Editor, and two reviewers for their valuable comments, which are very helpful to improve this work. This work was supported by a discovery grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) to J. Cao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiguo Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 477 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, T., Lin, Z., Groves, K. et al. Sparse functional partial least squares regression with a locally sparse slope function. Stat Comput 32, 30 (2022). https://doi.org/10.1007/s11222-021-10066-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11222-021-10066-y

Keywords

Navigation