Skip to main content
Log in

On coupling particle filter trajectories

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Particle filters are a powerful and flexible tool for performing inference on state-space models. They involve a collection of samples evolving over time through a combination of sampling and re-sampling steps. The re-sampling step is necessary to ensure that weight degeneracy is avoided. In several situations of statistical interest, it is important to be able to compare the estimates produced by two different particle filters; consequently, being able to efficiently couple two particle filter trajectories is often of paramount importance. In this text, we propose several ways to do so. In particular, we leverage ideas from the optimal transportation literature. In general, though computing the optimal transport map is extremely computationally expensive, to deal with this, we introduce computationally tractable approximations to optimal transport couplings. We demonstrate that our resulting algorithms for coupling two particle filter trajectories often perform orders of magnitude more efficiently than more standard approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alquier, P., Friel, N., Everitt, R., Boland, A.: Noisy monte carlo: Convergence of markov chains with approximate transition kernels. Stat. Comput. 26(1–2), 29–47 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Andrieu, C., Roberts, G.O.: The pseudo-marginal approach for efficient monte carlo computations. Ann. Stat. 37(2), 697–725 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Andrieu, C., Vihola, M.: Establishing some order amongst exact approximations of mcmcs. arXiv preprint arXiv:1404.6909 (2014)

  • Andrieu, C., Doucet, A., Holenstein, R.: Particle markov chain monte carlo methods. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 72(3), 269–342 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Andrieu, C., Vihola, M., et al.: Convergence properties of pseudo-marginal markov chain monte carlo algorithms. Ann. Appl. Probab. 25(2), 1030–1077 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Beskos, A., Jasra, A., Law, K., Tempone, R., Zhou, Y.: Multilevel sequential monte carlo samplers. arXiv preprint arXiv:1503.07259 (2015)

  • Cappé, O., Moulines, E., Rydén, T.: Inference in hidden markov models. Springer, New York (2009)

  • Chopin, N., Singh, S.S., et al.: On particle gibbs sampling. Bernoulli 21(3), 1855–1883 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Advances in Neural Information Processing Systems, pp. 2292–2300 (2013)

  • Dantzig, G.B.: Linear Programming and Extensions. Princeton university press, Princeton (1998)

    MATH  Google Scholar 

  • Del Moral, P., Jasra, A., Law, K., Zhou, Y.: Multilevel sequential monte carlo samplers for normalizing constants. arXiv preprint arXiv:1603.01136 (2016)

  • Deligiannidis, G., Doucet, A., Pitt, M.K., Kohn, R.: The correlated pseudo-marginal method. arXiv preprint arXiv:1511.04992 (2015)

  • Deming, W.E., Stephan, F.F.: On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Stat. 11(4), 427–444 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  • Doucet, A., Johansen, A.M.: A tutorial on particle filtering and smoothing: fifteen years later. Handb. Nonlinear Filter. 12(656–704), 3 (2009)

    MATH  Google Scholar 

  • Doucet, A., Pitt, M., Deligiannidis, G., Kohn, R.: Efficient implementation of markov chain monte carlo when using an unbiased likelihood estimator. Biometrika 102(2), 295–313 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Durbin, J., Koopman, S.J.: Time Series Analysis by State Space Methods, vol. 38. Oxford University Press, Oxford (2012)

    Book  MATH  Google Scholar 

  • Érdi, P., Lente, G.: Stochastic chemical kinetics. Theory (Mostly) Syst. Biol. Appl. (2014)

  • Ferradans, S., Papadakis, N., Peyré, G., Aujol, J.F.: Regularized discrete optimal transport. SIAM J. Imaging Sci. 7(3), 1853–1882 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Franzke, B., Kosko, B.: Using noise to speed up markov chain monte carlo estimation. Proced. Comput. Sci. 53, 113–120 (2015)

    Article  Google Scholar 

  • Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches in logarithmic expected time. ACM Trans. Math. Softw. (TOMS) 3(3), 209–226 (1977)

    Article  MATH  Google Scholar 

  • Geyer, C.J.: Practical markov chain monte carlo. Stat. Sci. 7, 473–483 (1992)

    Article  Google Scholar 

  • Giles, M.B.: Multilevel monte carlo path simulation. Oper. Res. 56(3), 607–617 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Giles, M.B.: Multilevel monte carlo methods. Acta Numer. 24, 259–328 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Gillespie, D.T.: Stochastic simulation of chemical kinetics. Ann. Rev. Phys. Chem. 58, 35–55 (2007)

    Article  Google Scholar 

  • Golightly, A., Wilkinson, D.J.: Bayesian parameter inference for stochastic biochemical network models using particle markov chain monte carlo. Interface focus 1(6), 807–820 (2011)

  • Gordon, N.J., Salmond, D.J., Smith, A.F.: Novel approach to nonlinear/non-gaussian bayesian state estimation. IET 140, 107–113 (1993)

    Google Scholar 

  • Gregory, A., Cotter, C., Reich, S.: Multilevel ensemble transform particle filtering. SIAM J. Sci. Comput. 38(3), A1317–A1338 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Harrison, J., West, M.: Bayesian Forecasting & Dynamic Models. Springer, Berlin (1999)

    MATH  Google Scholar 

  • Hoel, H., Law, K.J., Tempone, R.: Multilevel ensemble kalman filtering. arXiv preprint arXiv:1502.06069 (2015)

  • Ingle, A.N., Ma, C., Varghese, T.: Ultrasonic tracking of shear waves using a particle filter. Med. Phys. 42(11), 6711–6724 (2015)

    Article  Google Scholar 

  • Ionides, E.L., Bhadra, A., Atchadé, Y., King, A., et al.: Iterated filtering. Ann. Stat. 39(3), 1776–1802 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Jacob, P.E., Lindsten, F., Schön, T.B.: Coupling of particle filters. arXiv preprint arXiv:1606.01156 (2016)

  • Jasra, A., Kamatani, K., Law, K.J., Zhou, Y.: Multilevel particle filter. arXiv preprint arXiv:1510.04977 (2015)

  • Jasra, A., Kamatani, K., Osei, P.P., Zhou, Y.: Multilevel particle filters: Normalizing constant estimation. arXiv preprint arXiv:1605.04963 (2016)

  • Johannes, M.S., Polson, N.G., Stroud, J.R.: Optimal filtering of jump diffusions: extracting latent states from asset prices. Rev. Financ. Stud. 22(7), 2759–2799 (2009)

    Article  Google Scholar 

  • Kantas, N., Doucet, A., Singh, S.S., Maciejowski, J., Chopin, N., et al.: On particle methods for parameter estimation in state-space models. Stat. Sci. 30(3), 328–351 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Kantorovitch, L.: On the translocation of masses. Manag. Sci. 5(1), 1–4 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  • King, A.A., Ionides, E.L., Pascual, M., Bouma, M.J.: Inapparent infections and cholera dynamics. Nature 454(7206), 877–880 (2008)

    Article  Google Scholar 

  • Kitagawa, G.: Monte carlo filter and smoother for non-gaussian nonlinear state space models. J. Comput. Gr. Stat. 5(1), 1–25 (1996)

    MathSciNet  Google Scholar 

  • Knight, P.A.: The sinkhorn-knopp algorithm: convergence and applications. SIAM J. Matrix Anal. Appl. 30(1), 261–275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Kong, A., Liu, J.S., Wong, W.H.: Sequential imputations and bayesian missing data problems. J. Am. Stat. Assoc. 89(425), 278–288 (1994)

    Article  MATH  Google Scholar 

  • Kuhn, H.W.: The hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1–2), 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  • Mahalanobis, P.C.: On the generalized distance in statistics. Proc. Natl. Inst. Sci. (Calcutta) 2, 49–55 (1936)

    MATH  Google Scholar 

  • Medina-Aguayo, F.J., Lee, A., Roberts, G.O.: Stability of noisy metropolis–hastings. Stat. Comput. pp 1–25 (2015)

  • Naidan, B., Boytsov, L., Nyberg, E.: Permutation search methods are efficient, yet faster search is possible. Proc. VLDB Endow. 8(12), 1618–1629 (2015)

    Article  Google Scholar 

  • Nemeth, C., Fearnhead, P., Mihaylova, L.: Sequential monte carlo methods for state and parameter estimation in abruptly changing environments. IEEE Trans. Signal Process. 62(5), 1245–1255 (2014)

    Article  MathSciNet  Google Scholar 

  • Newman, K.B., Fernández, C., Thomas, L., Buckland, S.T.: Monte carlo inference for state-space models of wild animal populations. Biometrics 65(2), 572–583 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • O’Neill, P.D., Balding, D.J., Becker, N.G., Eerola, M., Mollison, D.: Analyses of infectious disease data from household outbreaks by markov chain monte carlo methods. J. R. Stat. Soc. Ser. C (Appl. Stat.) 49(4), 517–542 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Lear. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  • Pele, O., Werman, M.: Fast and robust earth mover’s distances. In: Computer Vision, 2009 IEEE 12th International Conference on, IEEE, pp 460–467 (2009)

  • Poyiadjis, G., Doucet, A., Singh, S.S.: Particle approximations of the score and observed information matrix in state space models with application to parameter estimation. Biometrika 98(1), 65–80 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Reich, S.: A guided sequential monte carlo method for the assimilation of data into stochastic dynamical systems. In: Recent Trends in Dynamical Systems, Springer, pp 205–220 (2013a)

  • Reich, S.: A nonparametric ensemble transform method for bayesian inference. SIAM J. Sci. Comput. 35(4), A2013–A2024 (2013b)

    Article  MathSciNet  MATH  Google Scholar 

  • Ross, S.M., Peköz, E.A.: A second course in probability.www.ProbabilityBookstore.com (2007)

  • Schmitzer, B.: A sparse multi-scale algorithm for dense optimal transport. arXiv preprint arXiv:1510.05466 (2015)

  • Sherlock, C., Thiery, A.H., Roberts, G.O., Rosenthal, J.S., et al.: On the efficiency of pseudo-marginal random walk metropolis algorithms. Ann. Stat. 43(1), 238–275 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Slaney, M., Casey, M.: Locality-sensitive hashing for finding nearest neighbors [lecture notes]. IEEE Signal Process. Mag. 25(2), 128–131 (2008)

    Article  Google Scholar 

  • Soules, G.W.: The rate of convergence of sinkhorn balancing. Linear Algebra Appl. 150, 3–40 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Sutharsan, S., Kirubarajan, T., Lang, T., McDonald, M.: An optimization-based parallel particle filter for multitarget tracking. IEEE Trans. Aerosp. Electr. Syst. 48(2), 1601–1618 (2012)

    Article  Google Scholar 

  • Toral, R., Mirasso, C.R., Hernández-Garcıa, E., Piro, O.: Analytical and numerical studies of noise-induced synchronization of chaotic systems. Chaos: an Interdisciplinary. J. Nonlinear Sci. 11(3), 665–673 (2001)

    MATH  Google Scholar 

  • Trigila, G., Tabak, E.G.: Data-driven optimal transport. Commun. Pure and Appl. Math. 3, 45 (2015)

    MATH  Google Scholar 

  • Wald, I., Havran, V.: On building fast kd-trees for ray tracing, and on doing that in o (n log n). In: Interactive Ray Tracing 2006, IEEE Symposium on, IEEE, pp. 61–69 (2006)

  • Wei, Z., Tao, T., ZhuoShu, D., Zio, E.: A dynamic particle filter-support vector regression method for reliability prediction. Reliab. Eng. Syst.Saf. 119, 109–116 (2013)

    Article  Google Scholar 

  • Wood, S.N.: Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466(7310), 1102–1104 (2010)

    Article  Google Scholar 

  • Yin, S., Zhu, X.: Intelligent particle filter and its application to fault detection of nonlinear system. IEEE Trans. Ind. Electr. 62(6), 3852–3861 (2015)

    Google Scholar 

  • Zhou, C., Kurths, J.: Noise-induced phase synchronization and synchronization transitions in chaotic oscillators. Phys. Rev. Lett. 88(23), 230,602 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank two anonymous reviewers for their constructive comments. A. Jasra is also affiliated with the RMI, CQF and OR and Analytics cluster at NUS. Ministry of Education—Singapore (AcRF R-155-000-150-133, AcRF R-155-000-156-112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborshee Sen.

Additional information

Ajay Jasra was funded by AcRF tier 1 Grant R-155-000-156-112. Alexandre H Thiery was funded by AcRF Grant R-155-000-150-133.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, D., Thiery, A.H. & Jasra, A. On coupling particle filter trajectories. Stat Comput 28, 461–475 (2018). https://doi.org/10.1007/s11222-017-9740-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-017-9740-z

Keywords

Navigation