Skip to main content
Log in

Formulation of Geometrically Nonlinear Numerical Model for Design of MEMS-Based Piezoresistive Pressure Sensor Operating in the Low-Pressure Range

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

Micro-fabricated pressure sensors are presently one of the most used micro-electromechanical system devices in the industry. Notably, they have gained popularity in medical, automotive and aeronautical applications. In the present work, a sensor operating in the low-pressure range with piezoresistive sensing and having a bossed-diaphragm structure has been designed. The structure has been characterized through numerical simulations using a custom-made software featuring geometrically nonlinear 2D elements. This simulation tool enables fast iterative design along with capturing key features related to the drift in sensitivity with respect to doping concentration and temperature. The simulation results show that the designed sensor has a full scale output of 2.2 µV/V/Pa, a linear error of 0.05% over its operating range of 5 kPa and a thermal sensitivity shift of − 0.1%/oC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Song, P., Ma, Z., Ma, J., Yang, L., Wei, J., Zhao, Y., Zhang, M., Yang, F., & Wang, X. (2020). Recent progress of miniature MEMS pressure sensors. Micromachines, 11(1), 56.

    Article  Google Scholar 

  2. Ghemari, Z., Saad, S., & Kuhl, K. (2018). Piezoresistive accelerometer mathematical model development with experimental validation. IEEE Sensors Journal, 18(7), 72690–72696.

    Article  Google Scholar 

  3. Starr, P., Bartels, K., Agrawal, C. M., & Bailey, S. (2016). A thin-film pressure transducer for implantable and intravascular blood pressure sensing. Sensors and Actuators A: Physical, 248, 38–45.

    Article  Google Scholar 

  4. Ghemari, Z., & Belkhiri, S. (2021). Mechanical resonator sensor characteristics development for precise vibratory analysis. Sensing and Imaging, 22(1), 40.

    Article  Google Scholar 

  5. Ghemari, Z., & Saad, S. (2019). Defects diagnosis by vibration analysis and improvement of vibration sensor measurement accuracy. Sensor Letters, 17(8), 608–613.

    Article  Google Scholar 

  6. Akiyama, M., Morofuji, Y., Kamohara, T., Nishikubo, K., Tsubai, M., Fukuda, O., & Ueno, N. (2006). Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films. Journal of Applied Physics, 100(11), 114318.

    Article  Google Scholar 

  7. Matovic, J., & Jaksic, Z. (2010). A comparative analyze of fundamental noise in cantilever sensors based on lateral and longitudinal displacement: Case of thermal infrared detectors. Microsystem Technologies, 16(5), 755–763.

    Article  Google Scholar 

  8. Eidi, A., Ghavifekr, H. B., & Shamsi, M. (2019). A novel biosensor based on micromechanical resonator array for lab-on-a-chip applications. Sensing and Imaging, 20(1), 39.

    Article  Google Scholar 

  9. Korayem, M. H., & Sharahi, H. J. (2011). Analysis of the effect of mechanical properties of liquid and geometrical parameters of cantilever on the frequency response function of AFM. The International Journal of Advanced Manufacturing Technology, 57(5), 477–489.

    Article  Google Scholar 

  10. Eidi, A., Shamsi, M., & Badri, H. (2022). Design and evaluation of a micro resonator structure as a biosensor for droplet analysis with a standard fabrication method. Sensor Review, 42(2), 263–273.

    Article  Google Scholar 

  11. Liu, W., Han, M. D., Meng, B., Sun, X. M., Huang, X. L., & Zhang, H. X. (2014). Low frequency wide bandwidth MEMS energy harvester based on spiral-shaped PVDF cantilever. Science China Technological Sciences, 57(6), 1068–1072.

    Article  Google Scholar 

  12. Eidi, A. (2022). Optimized cantilever sensor based on parallel high dielectric material. Sensing and Imaging. https://doi.org/10.1007/s11220-022-00381-7

    Article  Google Scholar 

  13. Anik’ev, I. I., Maksimyuk, V. A., Mikhailova, M. I., & Sushchenko, E. A. (2014). The reaction of an elastic cantilever-rod system to quasistatic and shock-wave loads. International Applied Mechanics, 50, 75–78.

    Article  Google Scholar 

  14. Sandmaier, H., & Kuhl, K. (1993). A square-diaphragm piezoresistive pressure sensor with a rectangular central boss for low-pressure ranges. IEEE Transactions on Electron Devices, 40(10), 1754–1759.

    Article  Google Scholar 

  15. Bao, M., Yu, L., & Wang, Y. (1991). Stress concentration structure with front beam for pressure sensor. Sensors and Actuators A: Physical, 28, 105–112.

    Article  Google Scholar 

  16. Tian, B., Zhao, Y., Jiang, Z., & Hu, B. (2012). The design and analysis of beam-membrane structure sensors for micro-pressure measurement. Review of Scientific Instruments, 83, 045003.

    Article  Google Scholar 

  17. Huang, X., & Zhang, D. (2014). A high sensitivity and high linearity pressure sensor based on a peninsula-structured diaphragm for low-pressure ranges. Sensors and Actuators A: Physical, 216, 176–189.

    Article  Google Scholar 

  18. Zhao, L., Xu, T., Hebibul, R., Jiang, Z., Ding, J., Peng, N., et al. (2016). A bossed diaphragm piezoresistive pressure sensor with a peninsula-island structure for the ultra-low-pressure range with high sensitivity. Measurement Science and Technology, 27, 124012.

    Article  Google Scholar 

  19. Bao, M. (2005). Analysis and design principles of MEMS devices, in analysis and design principles of MEMS devices. Elsevier, 2005, 33–114.

    Google Scholar 

  20. Xu, T., Zhao, L., Jiang, Z., Xu, Y., & Zhao, Y. (2016). Modeling and analysis of a novel combined peninsula–island structure diaphragm for ultra-low pressure sensing with high sensitivity. Journal of Physics D: Applied Physics, 49, 75110.

    Article  Google Scholar 

  21. Lin, L., Chu, H. C., & Lu, Y. W. (1999). A simulation program for the sensitivity and linearity of piezoresistive pressure sensors. Journal of Microelectromechanical Systems, 8(4), 514.

    Article  Google Scholar 

  22. Smith, C. S. (1954). Piezoresistance effect in germanium and silicon. Physical Review, 94, 42.

    Article  Google Scholar 

  23. Barlian, A. A., Park, W. T., Mallon, J. R., Rastegar, A. J., & Pruitt, B. L. (2009). Review: semiconductor piezoresistance for microsystems. Proceedings of the IEEE, 97(3), 513–552.

    Article  Google Scholar 

  24. Smith, C. S. (1958). Macroscopic symmetry and properties of crystals. Solid State Physics, 6, 175.

    Article  Google Scholar 

  25. Bao, M. (2005). Analysis and design principles of MEMS devices, in analysis and design principles of MEMS devices. Elsevier, 2005, 255–259.

    Google Scholar 

  26. Kanda, Y. (1991). Piezoresistance effect of silicon. Sensors and Actuators A: Physical, 28(2), 83–91.

    Article  Google Scholar 

  27. Pfann, W. G., & Thurston, R. N. (1961). Semiconducting stress transducers utilizing the transverse and shear piezoresistance effects. Journal of Applied Physics, 32, 2008–2019.

    Article  Google Scholar 

  28. Kanda, Y. (1987). Graphical representation of the piezoresistance coefficients in silicon-shear coefficients in plane. Japanese Journal of Applied Physics, 26, 1031. https://doi.org/10.1143/JJAP.26.1031

    Article  Google Scholar 

  29. Kanda, Y. (1982). A graphical representation of the piezoresistance coefficients in silicon. IEEE Transactions on Electron Devices, 29(1), 64–70.

    Article  Google Scholar 

  30. Panda, S. (2009). Microelectronics and optoelectronics technology (pp. 45–46). University Science Press.

    Google Scholar 

  31. Jacoboni, C., Canali, C., Ottaviani, G., & Alberigi Quaranta, A. (1977). A review of some charge transport properties of silicon. Solid-State Electronics, 20(2), 77–89.

    Article  Google Scholar 

  32. Arora, N. D., Hauser, J. R., & Roulston, D. J. (1982). Electron and hole mobilities in silicon as a function of concentration and temperature. IEEE Transactions on Electron Devices, 29, 292–295.

    Article  Google Scholar 

  33. Tufte, O. N., & Stelzer, E. L. (1963). Piezoresistive properties of silicon diffused layers. Journal of Applied Physics, 34(2), 313–318.

    Article  Google Scholar 

  34. Senturia, S. D. (2001). Microsystem Design (pp. 477–479). Kluwer Academic Publishers.

    Google Scholar 

  35. Olszacki, M. (2009). Mod´elisation et optimisation de capteurs de pression pi´ezor´esistifs. Ph.D. thesis, INSA de Toulouse.

  36. Crank, J. (1975). The mathematics of diffusion (2nd ed., pp. 28–29). Clarendon Press.

    Google Scholar 

  37. Jaeger, R. C. (2002). Introduction to microelectronic fabrication (p. 74). Prentice Hall.

    Google Scholar 

  38. Hofker, W. K. (1975). Implantation of Boron in Silicon (p. 46). N. V. Philips’ Gloeilampenfabrieken.

    Google Scholar 

  39. Szilard, R. (2004). Theories and applications of plate analysis: classical, numerical, and engineering methods (p. 1024). John Wiley.

    Book  Google Scholar 

  40. Timoshenko, S., & Woinowsky-Krieger, S. (2015). Theory of plates and shells (pp. 79–98). McGraw-Hill Education.

    MATH  Google Scholar 

  41. Fung, Y. C. (1965). Foundations of solid mechanics (p. 463). Prentice-Hall.

    Google Scholar 

  42. Reddy, J. N. (2006). Theory and Analysis of Elastic Plates and Shells, 2 Edition, Series in Systems and Control. Taylor & Francis, 42–43.

  43. Timoshenko, S., & Goodier, J. N. (1970). Theory of elasticity (pp. 6–7). McGrawHill.

    MATH  Google Scholar 

  44. Ferreira, A. J. M. (2008). MATLAB codes for finite element analysis: solids and structures. Solid mechanics and its applications (pp. 161–164). Springer Netherlands.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Ho Chi Minh City Department of Science and Technology of Vietnam, Contract Number: 12/2021/HĐ-QKHCN in 2021, March 24th.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Cuong Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, Q.C., Nguyen, T.K., Trinh, X.T. et al. Formulation of Geometrically Nonlinear Numerical Model for Design of MEMS-Based Piezoresistive Pressure Sensor Operating in the Low-Pressure Range. Sens Imaging 23, 32 (2022). https://doi.org/10.1007/s11220-022-00401-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-022-00401-6

Keywords

Navigation