Skip to main content
Log in

Optimized Cantilever Sensor Based on Parallel High Dielectric Material

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

Cantilever is dramatically used as a resonator sensor to detect the presence of a particular molecule or cell in an environment and to measure their amount. Electrostatic force is commonly used to actuate MEMS based cantilevers to resonate because a cantilever has a simple capacitor structure. In this paper, a novel design is proposed to optimize the cantilevers performance by use of high dielectric material in its capacitor structure. The mathematical model of the proposed design and the performance of the cantilever sensor and its quality has been evaluated and reported by finite element simulations in this way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Priyanka, E. B., Thangavel, S., Prasad, P. H., & Mohanasundaram, R. (2021). IoT fusion based model predictive pid control approach for oil pipeline infrastructure. International Journal of Critical Infrastructure Protection, 35, 100485. https://doi.org/10.1016/j.ijcip.2021.100485

    Article  Google Scholar 

  2. Devi, T. K., Priyanka, E. B., & Sakthivel, P. (2021). FPGA implementation of balanced biorthogonal multiwavelet using direct pipelined mapping method for image compression applications. Sensing and Imaging, 22(1), 1–19.

    Article  Google Scholar 

  3. Ponnibala, M., Priyanka, E. B., & Thangavel, S. (2021). Proliferative diabetic retinopathy diagnostic investigation using retinal blood vessels mining technique. Sensing and Imaging, 22(1), 1–11. https://doi.org/10.1007/s11220-021-00331-9

    Article  Google Scholar 

  4. Priyanka, E. B., Thangavel, S., & Kalavathidevi, T. (2021). Miniaturized antenna design for communication establishment of peer-to-peer communication in the oil pipelines. Petroleum Research, 6(3), 291–302. https://doi.org/10.1016/j.ptlrs.2021.04.003

    Article  Google Scholar 

  5. Chennippan, M., Bhaskaran, P. E., Adhulrasheed, I. S. K., Subramaniam, T., & Govindasamy, R. (2020). Vibration signals based bearing defects identification through online monitoring using LABVIEW. Journal Européen des Systèmes Automatisés, 53(2), 187–193.

    Article  Google Scholar 

  6. Priyanka, E.B. & Thangavel, S. (2020) Decision making based on machine learning algorithm for identifying failure rates in the oil transportation pipeline. In 2020 international conference on decision aid sciences and application (DASA, November, Sakheer, Bahrain, IEEE (pp. 914-919). doi:https://doi.org/10.1109/DASA51403.2020.9317180

  7. Wang, J., Zhu, Y., & Wang, X. (2016). A high-throughput cantilever array sensor for multiple liver cancer biomarkers detection. Journal of IEEE Sensors, 16(12), 4675–4682. https://doi.org/10.1109/jsen.2016.2524515

    Article  Google Scholar 

  8. Eidi, A., Ghavifekr, H. B., & Shamsi, M. (2019). A novel biosensor based on micromechanical resonator array for lab-on-a-chip applications. Journal of Sensing and Imaging, 20(39), 1–10. https://doi.org/10.1007/s11220-019-0261-z

    Article  Google Scholar 

  9. Erismis, M. A., Pereira Neves, H., De Moor, P., Puers, R., & Van Hoof, C. (2010). A water-tight packaging of MEMS electrostatic actuators for biomedical applications. Microsystem Technologies, 16(12), 2109–2113. https://doi.org/10.1007/s00542-010-1136-3

    Article  Google Scholar 

  10. Salehi, P., Yaghoobi, H., & Torabi, M. (2012). Erratum to: “Application of the differential transformation method and variational iteration method to large deformation of cantilever beams under point load.” Journal of Mechanical Science and Technology, 26(12), 3743–3743. https://doi.org/10.1007/s12206-012-1016-0

    Article  Google Scholar 

  11. Korayem, M. H., & Sharahi, H. J. (2011). Analysis of the effect of mechanical properties of liquid and geometrical parameters of cantilever on the frequency response function of AFM. The International Journal of Advanced Manufacturing Technology, 57(5–8), 477–489. https://doi.org/10.1007/s00170-011-3321-7

    Article  Google Scholar 

  12. Matović, J., & Jakšić, Z. (2010). A comparative analyze of fundamental noise in cantilever sensors based on lateral and longitudinal displacement: Case of thermal infrared detectors. Microsystem Technologies, 16(5), 755–763. https://doi.org/10.1007/s00542-010-1052-6

    Article  Google Scholar 

  13. Anik’ev, I. I., Maksimyuk, V. A., Mikhailova, M. I., & Sushchenko, E. A. (2014). The reaction of an elastic cantilever-rod system to Quasistatic and shock-wave loads. International Applied Mechanics, 50(1), 75–78. https://doi.org/10.1007/s10778-014-0612-3

    Article  Google Scholar 

  14. Liu, W., Han, M., Meng, B., Sun, X., Huang, X., & Zhang, H. (2014). Low frequency wide bandwidth MEMS energy harvester based on spiral-shaped PVDF cantilever. Science China Technological Sciences, 57(6), 1068–1072. https://doi.org/10.1007/s11431-014-5511-7

    Article  Google Scholar 

  15. He, J., Xie, J., He, X., Du, L., Zhou, W., & Hu, Z. (2015). Analytical and high accurate formula for electrostatic force of comb-actuators with ground substrate. Microsystem Technologies, 22(2), 255–260. https://doi.org/10.1007/s00542-015-2412-z

    Article  Google Scholar 

  16. Kamiya, D., Hayama, T., & Horie, M. (1999). Electrostatic comb-drive actuators made of polyimide for actuating micromotion convert mechanisms. Microsystem Technologies, 5(4), 161–165. https://doi.org/10.1007/s005420050157

    Article  Google Scholar 

  17. Hailu, Z., He, S., & Ben Mrad, R. (2015). Hybrid micro electrostatic actuator. Microsystem Technologies, 22(2), 319–327. https://doi.org/10.1007/s00542-015-2424-8

    Article  Google Scholar 

  18. Tsou, C. (2006). The design and simulation of a novel out-of-plane micro electrostatic actuator. Microsystem Technologies, 12(8), 723–729. https://doi.org/10.1007/s00542-006-0107-1

    Article  Google Scholar 

  19. Afrang, S., & Nematkhah, N. (2019). A new MEMS based variable capacitor using electrostatic vertical comb drive actuator and auxiliary cantilever beams. Microsystem Technologies, 25(9), 3317–3327. https://doi.org/10.1007/s00542-019-04293-7

    Article  Google Scholar 

  20. Pham, P. H., Hoang, K. T., & Nguyen, D. Q. (2019). Trapezoidal-shaped electrostatic comb-drive actuator with large displacement and high driving force density. Microsystem Technologies, 25(8), 3111–3118. https://doi.org/10.1007/s00542-019-04315-4

    Article  Google Scholar 

  21. Sauerbrey, G. (1959). Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung. Zeitschrift für physik, 155(1), 206–222.

    Article  Google Scholar 

  22. Takahashi, H., Dung, N. M., Matsumoto, K., & Shimoyama, I. (2012). Differential pressure sensor using a piezoresistive cantilever. Journal of Micromechanics and Microengineering., 22(36), 1–30. https://doi.org/10.1088/0960-1317/22/5/055015

    Article  Google Scholar 

  23. Toda, M., Inomata, N., Ono, T., & Voiculescu, I. (2017). Cantilever beam temperature sensors for biological applications. IEEJ Transactions on Electrical and Electronic Engineering., 12(2), 153–160. https://doi.org/10.1002/tee.22360

    Article  Google Scholar 

  24. Baller, M. K., Lang, H. P., Fritz, J., Gerber, C., Gimzewski, J. K., Drechsler, U., Rothuizen, H., Despont, M., Vettiger, P., Battiston, F. M., & Ramseyer, J. P. (2000). A cantilever array-based artificial nose. Ultramicroscopy., 82(1–4), 1–9. https://doi.org/10.1016/S0304-3991(99)00123-0

    Article  Google Scholar 

  25. Lang, H. P., Hegner, M., & Gerber, C. (2005). Cantilever array sensors. Materialstoday, 8(4), 30–36. https://doi.org/10.1016/S1369-7021(05)00792-3

    Article  Google Scholar 

  26. Su, M., Li, S., & Dravid, V. P. (2003). Microcantilever resonance-based DNA detection with nanoparticle probes. Applied Physics Letters, 82(20), 3562–3564.

    Article  Google Scholar 

  27. Baek, K. H., Seo, Y.-T., Bang, Y.-S., Lee, D., Kim, J.-M., & Kim, Y. K. (2011). Design, fabrication and characterization of piezoelectric micro-cantilever operated in liquid environment for ultrasound energy source applications. Microsystem Technologies, 17(8), 1319–1327. https://doi.org/10.1007/s00542-011-1292-0

    Article  Google Scholar 

  28. Al-Gayem, Q., Liu, H., Richardson, A., & Burd, N. (2011). Test strategies for electrode degradation in bio-fluidic microsystems. Journal of Electronic Testing, 27(1), 57–68. https://doi.org/10.1007/s10836-010-5180-9

    Article  Google Scholar 

  29. De Cezaro, A. M., Ballen, S. C., Hoehne, L., Steffens, J., & Steffens, C. (2021). Cantilever nanobiosensors applied for endocrine disruptor detection in water: A review. Water, Air, & Soil Pollution. https://doi.org/10.1007/s11270-021-05179-z

    Article  Google Scholar 

  30. Rodrigues, L. F., Ierich, J. C. M., Andrade, M. A., Hausen, M. A., Leite, F. L., Moreau, A. L. D., & Stefens, C. (2017). Nanomechanical cantilever-based sensor: An efcient tool to measure the binding between the herbicide mesotrione and 4-hydroxyphenylpyruvate dioxygenase. NANO, 12(07), 1750079. https://doi.org/10.1142/S1793292017500795

    Article  Google Scholar 

  31. Stefens, C., Leite, F. L., Manzoli, A., Sandoval, R. D., Fatibello, O., & Herrmann, P. S. P. (2014). Microcantilever sensors coated with a sensitive polyaniline layer for detecting volatile organic compounds. Journal of Nanoscience and Nanotechnology. https://doi.org/10.1166/jnn.2014.9348

    Article  Google Scholar 

  32. Stefens, C., Corazza, M. L., Franceschi, E., Castilhos, F., Herrmann, P. S. P., & Oliveira, J. V. (2012). Development of gas sensors coatings by polyaniline using pressurized fluid. Sensors and Actuators, B: Chemical, 171–172, 627–633. https://doi.org/10.1016/j.snb.2012.05.044

    Article  Google Scholar 

  33. Stefens, C., Leite, F. L., Bueno, C. C., Manzoli, A., & Herrmann, P. S. P. (2012). Atomic force microscopy as a tool applied to Nano/Biosensors. Sensors, 12(6), 8278–8300. https://doi.org/10.3390/s120608278

    Article  Google Scholar 

  34. Subramanian, M. A., Li, D., Duan, N., Reisner, B. A., & Sleight, A. W. (2000). High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. Journal of Solid State Chemistry, 151(2), 323–325. https://doi.org/10.1006/jssc.2000.8703

    Article  Google Scholar 

  35. Hsu, C. T., Su, Y. K., & Yokoyama, M. (1992). High dielectric constant of RF-sputtered HfO2 thin films. Japanese Journal of Applied Physics, 31(8), 2501–2504. https://doi.org/10.1143/jjap.31.2501

    Article  Google Scholar 

  36. Crippa, M., Bianchi, A., Cristofori, D., D’Arienzo, M., Merletti, F., Morazzoni, F., Scotti, R., & Simonutti, R. (2013). High dielectric constant rutile–polystyrene composite with enhanced percolative threshold. Journal of Materials Chemistry C, 1(3), 484–492. https://doi.org/10.1039/c2tc00042c

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Eidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eidi, A. Optimized Cantilever Sensor Based on Parallel High Dielectric Material. Sens Imaging 23, 13 (2022). https://doi.org/10.1007/s11220-022-00381-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-022-00381-7

Keywords

Navigation