Skip to main content
Log in

Design and Simulation of pH-ISFET Readout Circuit for Low Thermal Sensitivity Applications Through an Automatic Selection of an Isothermal Point

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

The purpose of this paper is to present a high-performance pH-ISFET readout circuit, which carries out a temperature insensitivity, linearity and temporal drift compensation, by using a new architecture that automates the control of an isothermal point. Unlike many existing readout circuits in the literature, this circuit can be optimized for several isothermal pH values as desired and for any structure compatible with the standard ISFET sensor. To eliminate the effect of the temporal drift, generally observed in ISFET type sensors, the same readout circuit was used in conjunction with Machine Learning (ML) implementation. The ML model was trained using a dataset from simulations performed using the ISFET macro-model including the drift effect. Through simulations, we show that the proposed scheme reduces drastically the temperature sensitivity of the sensor to less than \(1.5\times 10^{-4}\,{\mathrm{pH}}/^{\circ }{\mathrm{C}}\) for pH \(\pm \,2\) around any isothermal point at a wide pH range (from 1 to 12). For small changes of the pH around the isothermal point, the readout circuit outperforms many other designs with a thermal sensibility of less than \(3.2\times 10^{-6}\,{\mathrm{pH}}/^\circ {\mathrm{C}}\). Results show that the system was able to predict the long-term behavior of the pH-ISFET (several days) with a relative error, of the output, that not exceed \(0.19\%\) for the 3-sigma testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Bergveld, P. (1970). Development of an ion-sensitive solid-state device for neuropsychological measurements. IEEE Transactions on Biomedical Engineering, BME–17 1, 70–71. https://doi.org/10.1109/tbme.1970.4502688.

    Article  Google Scholar 

  2. Matti, K. (2017). Detection principles of biological and chemical FET sensors. Biosensors and Bioelectronics, 98, 437–448. https://doi.org/10.1016/j.bios.2017.07.010.

    Article  Google Scholar 

  3. Sherbow, T. J., Kuhl, M. G., Lindquist, G. A., Levine, J. D., Pluth, M. D., Johnson, D. W., & Fontenot, S. A. (2021). Hydrosulfide-selective chemfets for aqueous \({H_2S/HS}^-\) measurement. Sensing and Bio-Sensing Research, 31, 100394. https://doi.org/10.1016/j.sbsr.2020.100394.

    Article  Google Scholar 

  4. Abdulwahab, M. H. M., Moser, N., Rodriguez, M. J., & Georgiou, P. (2018). A CMOS bio-chip combining pH sensing, temperature regulation and electric field generation for dna detection and manipulation. In 2018 IEEE international symposium on circuits and systems (ISCAS) (pp. 1–5). https://doi.org/10.1109/ISCAS.2018.8351342

  5. Cacho, S. M., Malpartida, C. K., Cicatiello, C., Rodriguez, M. J., & Georgiou, P. (2020). A dual-sensing thermo-chemical ISFET array for DNA-based diagnostics. IEEE Transactions on Biomedical Circuits and Systems, 14(3), 477–489. https://doi.org/10.1109/TBCAS.2020.2978000.

    Article  Google Scholar 

  6. Poghossian, A., & Schöning, M. J. (2014). Label-free sensing of biomolecules with field-effect devices for clinical applications. Electroanalysis, 26, 1197–1213. https://doi.org/10.1002/elan.201400073.

    Article  Google Scholar 

  7. Chakraborty, M., & Hashmi, M. S. J. (Eds.). (2017). An overview of biosensors and devices, reference module in materials science and materials engineering. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.10316-9.

    Book  Google Scholar 

  8. Gaddour, A., Dghais, W., & Ali, B. H. M. B. (2020). Temperature compensation circuit for isfet sensor. Journal of Low Power Electronics and Applications, 10–2, 16. https://doi.org/10.3390/jlpea10010002.

    Article  Google Scholar 

  9. Shalmany, S. H., Merz, M., Fekri, A., Chang, Z.-Y., Hoofman, R. J. O. M., & Pertijs, M. A. P. (2017). A 7 \(\mu \)w offset- and temperature-compensated ph-to-digital converter. Hindawi Journal of Sensors, 2017, 8. https://doi.org/10.1155/2017/6158689.

    Article  Google Scholar 

  10. Sinha, S., Bhardwaj, R., Sahu, N., Ahuja, H., Sharma, R., & Mukhiya, R. (2020). Temperature and temporal drift compensation for \({Al_2O_3}\)-gate isfet-based ph sensor using machine learning techniques. Microelectronics Journal, 97, 104710. https://doi.org/10.1016/j.mejo.2020.104710.

    Article  Google Scholar 

  11. Jamasb, S., Collins, S., & Smith, R. L. (1997). A physically-based model for drift in \({Al_2O_3}\)-gate pH ISFET’s. In Tech Digest, 9th international conference on solid-state sensors and actuators (transducers ’97), (Vol. 15–19, pp. 1379–1382). https://doi.org/10.1109/SENSOR.1997.635494

  12. Saba, G., Wright-Fairbanks, E., Chen, B., Cai, W.-J., Barnard, A., Jones, C., et al. (2019). The development and validation of a profiling glider deep ISFET-based pH sensor for high resolution observations of coastal and ocean acidification. Frontiers in Marine Science, 6, 664. https://doi.org/10.3389/fmars.2019.00664.

    Article  Google Scholar 

  13. Kow-Ming, C., Chih-Tien, C., Kuo-Yi, C., & Chia-Hung, L. (2010). A novel pH-dependent drift improvement method for zirconium dioxide gated pH-ion sensitive field effect transistors. Sensors, 10(5), 4643–4654. https://doi.org/10.3390/s100504643.

    Article  Google Scholar 

  14. Elyasi, A., Fouladian, M., & Jamasb, S. (2018). Counteracting threshold-voltage drift in ion-selective field effect transistors (ISFETs) using threshold-setting ion implantation. IEEE Journal of the Electron Devices Society, 6, 747–754. https://doi.org/10.1109/JEDS.2018.2847740.

    Article  Google Scholar 

  15. Martinoia, S., & Massobrio, G. (2000). A behavioral macromodel of the ISFET in SPICE. Sensors and Actuators B: Chemical, 62(3), 182–189. https://doi.org/10.1016/S0925-4005(99)00377-9.

    Article  Google Scholar 

  16. Georgiou, P., & Toumazou, C. (2009). ISFET characteristics in CMOS and their application to weak inversion operation. Sensors and Actuators B: Chemical, 143(1), 211–217. https://doi.org/10.1016/j.snb.2009.09.018.

    Article  Google Scholar 

  17. Chen, Y. C., S, J. S., & Chou, J. C. (2004). Temperature effects on the characteristics of hydrogen ion-sensitive field-effect transistors with sol-gel-derived lead titanate gates. Analytica Chimica Acta, 516(1), 43–48. https://doi.org/10.1016/j.aca.2004.03.078.

    Article  Google Scholar 

  18. Liu, W. (2001). MOSFET models for SPICE simulation, including BSIM3v3 and BSIM4. New York: Wiley. https://doi.org/10.1109/9780470547182.

    Book  Google Scholar 

  19. Chin, Y. L., Chou, J. C., Sun, T. P., Chung, W. Y., & Hsiung, S. K. (2001). A novel pH sensitive ISFET with on chip temperature sensing using CMOS standard process. Sensors and Actuators B: Chemical, 76(1), 582–593. https://doi.org/10.1016/S0925-4005(01)00639-6.

    Article  Google Scholar 

  20. Jiao, L. H., & Barakat, N. (2012). Ion-sensitive field effect transistor as a pH sensor. Journal of Nanoscience and Nanotechnology, 12, 1–5. https://doi.org/10.1166/jnn.2013.6065.

    Article  Google Scholar 

  21. Poornika, G. F., Stiegler, H. J., Zhao, M., Cantley, K. D., Obradovic, B., Chapman, R. A., et al. (2012). SPICE macromodel of silicon-on-insulator-field-effect-transistor-based biological sensors. Sensors and Actuators B: Chemical, 161(1), 163–170. https://doi.org/10.1016/j.snb.2011.10.002.

    Article  Google Scholar 

  22. Bethi, S. S., Lee, K., Veillette, J. R.and Caletta, & Willett, M. A. (2013). Temperature and process insensitive CMOS reference current generator. In 2013 IEEE 56th international midwest symposium on circuits and systems (MWSCAS) (pp. 301–304). IEEE, Columbus. https://doi.org/10.1109/MWSCAS.2013.6674645

  23. Early, J., Ollinger, J., Darby, C., Alling, T., Mullen, S., Casey, A., et al. (2019). Identification of compounds with pH-dependent bactericidal activity against mycobacterium tuberculosis. ACS Infectious Diseases, 5(2), 272–280. https://doi.org/10.1021/acsinfecdis.8b00256.

    Article  Google Scholar 

  24. Jamasb, S., Collins, S., & Smith, R. L. (1998). A physical model for drift in pH ISFETs. Sensors and Actuators B: Chemical, 49, 146–155. https://doi.org/10.1016/S0925-4005(98)00040-9.

    Article  Google Scholar 

  25. Priyanka, E. B., & Thangavel, S. (2020). Decision making based on machine learning algorithm for identifying failure rates in the oil transportation pipeline. In 2020 International conference on decision aid sciences and application (DASA) (pp. 914–919). https://doi.org/10.1109/DASA51403.2020.9317180

  26. Priyanka, E. B., Thangavel, S., Prasad, P. H., & Mohanasundaram, R. (2021). Iot fusion based model predictive pid control approach for oil pipeline infrastructure. International Journal of Critical Infrastructure Protection, 35, 100485. https://doi.org/10.1016/j.ijcip.2021.100485.

    Article  Google Scholar 

  27. Priyanka, E. B., Thangavel, S., Gao, X.-Z., & Sivakumar, N. S. (2021). Digital twin for oil pipeline risk estimation using prognostic and machine learning techniques. Journal of Industrial Information Integration. https://doi.org/10.1016/j.jii.2021.100272.

    Article  Google Scholar 

  28. Priyanka, E. B., Chennippan, M., & Subramaniam, T. (2020). Future prediction and estimation of faults occurrences in oil pipelines by using data clustering with time series forecasting. Journal of Loss Prevention in the Process Industries, 66, 104203. https://doi.org/10.1016/j.jlp.2020.104203.

    Article  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

Authors contributed equally to this work.

Corresponding author

Correspondence to Salah Eddine Naimi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent for publication

All autors consent to submit this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrak, A., Naimi, S.E. Design and Simulation of pH-ISFET Readout Circuit for Low Thermal Sensitivity Applications Through an Automatic Selection of an Isothermal Point. Sens Imaging 23, 10 (2022). https://doi.org/10.1007/s11220-022-00378-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-022-00378-2

Keywords

Navigation