Skip to main content
Log in

Surface Acoustic Wave Vapor Sensor with Graphene Interdigital Transducer for TNT Detection

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

The performance of the surface acoustic wave (SAW) vapor sensor with graphene interdigital transducer (IDT) is investigated to study the improvement of sensitivity and decrease of secondary effects by the finite element method (FEM). Unlike conventional Al metal electrodes, the observed increase in the SAW phase velocity confirms the existence of elastic loading for the graphene electrode to the contact surface. Accordingly, the mass sensitivity of the SAW device with graphene electrode shows one order of magnitude higher. In the presence of TNT, the resonance frequency shift of the SAW sensor with graphene IDT is approximately 10 times larger than that with Al. Also, graphene electrodes offer the less secondary effects (BAW generations). So the SAW sensor with graphene IDT possesses superior sensing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Walsh, M. E. (2001). Determination of nitroaromatic, nitramine, and nitrate ester explosives in soil by gas chromatography and an electron capture detector. Talanta, 54, 427–438.

    Article  Google Scholar 

  2. Martin, S. J., Frye, G. C., & Senturia, S. D. (1994). Dynamics and response of polymer-coated surface acoustic wave devices: Effect of viscoelastic properties and film resonance. Analytical Chemistry, 66, 2201–2219.

    Article  Google Scholar 

  3. Collin, O. L., Niegel, C., DeRhodes, K. E., McCord, B. R., & Jackson, G. P. (2006). Fast gas chromatography of explosive compounds using a pulsed-discharge electron capture detector. Journal of Forensic Sciences, 51, 815–818.

    Article  Google Scholar 

  4. Harding, G. (2004). X-ray scatter tomography for explosives detection. Radiation Physics and Chemistry, 71, 869–881.

    Article  Google Scholar 

  5. Smith, J. A. S., Rayner, T. J., Rowe, M. D., Barras, J., Peirson, N. F., Stevens, A. D., et al. (2014). Magnetic field-cycling NMR and (14)N, (17)O quadrupole resonance in the explosive pentaerythritol tetranitrate (PETN). Journal of Magnetic Resonance, 204, 139–144.

    Article  Google Scholar 

  6. Fischer, N., Klapötke, T. M., Stierstorfer, J., & Wiedemann, C. (2011). 1-Nitratoethyl-5-nitriminotetrazole derivatives—shaping future high explosives. Polyhedron, 30, 2374–2386.

    Article  Google Scholar 

  7. Li, H. H., Lü, F. T., Zhang, S. J., He, G., & Fang, Y. (2008). Preparation of monolayer-assembled fluorescent film and its sensing performances to hidden nitroaromatic explosives. Chinese Science Bulletin, 53, 1644–1650.

    Google Scholar 

  8. Thompson, C. H., Keeley, D. L., Voit, B., Eichhorn, K. J., & Mikhaylova, Y. (2008). Hyperbranched polyesters with internal and exo-presented hydrogen-bond acidic sensor groups for surface acoustic wave sensors. Journal of Applied Polymer Science, 107, 1401–1406.

    Article  Google Scholar 

  9. Higgins, B. A., Simonson, D. L., Houser, E. J., Kohl, J. G., & McGill, R. A. (2010). Synthesis and characterization of a hyperbranched hydrogen bond acidic carbosilane sorbent polymer. Journal of Applied Polymer Science, 48, 3000–3009.

    Google Scholar 

  10. McGill, R. A., Mlsna, T. E., Chung, R., Nguyen, V. K., & Stepnowski, J. (2000). The design of functionalized silicone polymers for chemical sensor detection of nitroaromatic compounds. Sensors and Actuators, B: Chemical Sensors and Materials, 65, 5–9.

    Article  Google Scholar 

  11. Houser, E. J., Mlsna, T. E., & Nguyen, V. K. (2001). Rational materials design of sorbent coatings for explosives: Applications with chemical sensors. Talanta, 54, 469–485.

    Article  Google Scholar 

  12. Wei, D., Wang, L., Ma, J., & Jiang, H. (2012). Synthesis and evaluation of hexafluoroisopropanol-functionalized polysiloxane as a new coating material for sensors. Journal of Applied Polymer Science, 124, 4136–4140.

    Article  Google Scholar 

  13. Karmarkar, K. H., Webber, L. M., & Guilbault, G. G. (1976). Measurement of sulfur dioxide in automobile exhausts and industrial stack gases with a coated piezoelectric crystal. Analytica Chimica Acta, 81, 265–271.

    Article  Google Scholar 

  14. Tomita, Y., Ho, M. H., & Guilbault, G. G. (1979). Detection of explosives with a coated piezoelectric quartz crystal. Analytical Chemistry, 51, 1475–1478.

    Article  Google Scholar 

  15. Houser, E. J., McGill, R. A., Nguyen, V. K., Chung, R., & Weir, D. W. (2000). Recent developments in sorbent coatings and chemical detectors at the naval research laboratory for explosives and chemical agents. SPIE, 4038, 504–510.

    Google Scholar 

  16. Grate, J. W., Patrash, S. J., & Kaganove, S. N. (1999). Hydrogen bond acidic polymers for surface acoustic wave vapour sensors and arrays. Analytical Chemistry, 71, 1033–1040.

    Article  Google Scholar 

  17. Jha, S. K., & Yadava, R. D. S. (2010). Development of surface acoustic wave electronic nose using pattern recognition system. Defence Science Journal, 60, 364–376.

    Article  Google Scholar 

  18. Royer, D., & Dieulesaint, E. (1999). Elastic waves in solids II: Generation, acousto-optic interaction, applications. New York, NY: Springer.

    MATH  Google Scholar 

  19. Hashimoto, K. Y. (2013). Surface acoustic wave devices in telecommunications. New York, NY: Springer.

    Google Scholar 

  20. de Lima, M. M., Jr., Seidel, W., Kostial, H., & Santos, P. V. (2004). Embedded interdigital transducers for high-frequency surface acoustic waves on GaAs. Journal of Applied Physics, 96, 3494–3500.

    Article  Google Scholar 

  21. Campbell, C. (2012). Surface acoustic wave devices and their signal processing applications. New York, NY: Academic Press.

    Google Scholar 

  22. Sato, S. (2015). Graphene for nanoelectronics *. Japanese Journal of Applied Physics, 54, 040102.

    Article  Google Scholar 

  23. Roshchupkin, D., Ortega, L., Zizak, I., Plotitcyna, O., Matveev, V., Kononenko, O., et al. (2015). Surface acoustic wave propagation in graphene film. Journal of Applied Physics, 118, 104901.

    Article  Google Scholar 

  24. Mayorov, A. S., Hunter, N., Muchenje, W., Wood, C. D., Rosamond, M., Linfield, E. H., et al. (2014). Surface acoustic wave generation and detection using graphene interdigitated transducers on lithium niobate. Applied Physics Letters, 104, 083509.

    Article  Google Scholar 

  25. Nikolaou, I., Hallil, H., Deligeorgis, G., Conedera, V., Garcia, H., Dejous, C., & Rebière, D. (2015). Novel SH-SAW gas sensor based on Graphene. In IEEE, Salvador, Brazil.

  26. Mason, W. P. (1972). Physical acoustics principles and methods. New York, NY: Academic Press.

    Google Scholar 

  27. Rajasekaran, G., Narayanan, P., & Parashar, A. (2015). Effect of point and line defects on mechanical and thermal properties of graphene: a review. Critical Reviews in Solid State and Materials Sciences, 41(215), 47–71.

    Google Scholar 

  28. Dragoman, M., Cismaru, A., Stefanescu, A., Dinescu, A., & Dragoman, D. (2013). The electromagnetic properties of graphene in the microwave and millimeterwave spectrum. In IEEE, Nuremberg, Germany.

  29. Raj, V. B., Nimal, A. T., Parmar, Y., Sharma, M. U., & Gupta, V. (2012). Investigations on the origin of mass and elastic loading in the time varying distinct response of ZnO SAW ammonia sensor. Sensors and Actuators, B: Chemical Sensors and Materials, 576, 166–167.

    Google Scholar 

  30. Ramakrishnan, N., Harshal, B. N., & Roy, P. P. (2012). Resonant frequency characteristics of a SAW device attached to resonating micropillars. Sensors, 12, 3789–3797.

    Article  Google Scholar 

  31. Farnell, G. W., & Adler, E. L. (1972). 2—Elastic wave propagation in thin layers. Acoustical Physics, 9, 35–127.

    Article  Google Scholar 

  32. Politano, A., & Chiarello, G. (2015). Probing the Young’s modulus and Poisson’s ratio in graphene/metal interfaces and graphite: a comparative study. Nano Research, 8, 1847–1856.

    Article  Google Scholar 

  33. Abd-alla, A. N., & Askar, N. A. (2014). Calculation of bulk acoustic wave propagation velocities in trigonal piezoelectric smart materials. Applied. Mathematics & Information Sciences, 8, 1625–1632.

    Article  Google Scholar 

  34. Royer, D., & Dieulesaint, E. (1999). Onde élastique dans les solides, Tome 2: Génération, interaction acousto-optique, applications. Paris: Elsevier Masson.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11604025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Jin, J. Surface Acoustic Wave Vapor Sensor with Graphene Interdigital Transducer for TNT Detection. Sens Imaging 21, 24 (2020). https://doi.org/10.1007/s11220-020-00287-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-020-00287-2

Keywords

Navigation