Skip to main content
Log in

New Plasmonic Biosensors for Determination of Human Hemoglobin Concentration in Blood

  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

Two new types of plasmonic biosensors are applied for detection of hemoglobin concentration in human blood by using the angular interrogation method. The first type of the fiber with five layers is made by a SiO2 core surrounded by GaP, gold, Al2O3 and hemoglobin layers. The second type of the fiber with six layers is made by a ZBLAN core surrounded by NaF, silicon, silver, Al2O3 and hemoglobin layers. For some thicknesses of the interior layers and for a hemoglobin concentration close to the mean value of a male human at a laser wavelength (1.53 μm), a large figure of merit and maximum value of the amplitude sensitivity are obtained at an angle very close to the resonance angle. For the second type of the sensor, 0.0036 g/dl resolution is obtained, which is 10% finer than the estimated detection limit (0.004 g/dl) reported very recently by using an electrochemical method. Also, our resolution is better than the previously reported value (0.006 g/dl if the angular resolution is 0.001°) by using a gold–aluminum-based surface plasmon resonance sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Popescu, V. A., Puscas, N. N., & Perrone, G. (2012). Power absorption efficiency of a new microstructured plasmon optical fiber. Journal of the Optical Society of America B, 29(11), 3039–3046. https://doi.org/10.1364/JOSAB.29.003039.

    Article  Google Scholar 

  2. Popescu, V. A., Puscas, N. N., & Perrone, G. (2014). Strong power absorption in a new microstructured holey fiber-based plasmonic sensor. Journal of the Optical Society of America B, 31(5), 1062–1070. https://doi.org/10.1364/JOSAB.31.001062.

    Article  Google Scholar 

  3. Sharma, A. K., Dominic, A., Kaur, B., & Popescu, V. A. (2019). Fluoride fiber sensor with huge performance enhancement via Optimum radiative damping at Ag-Al2O3-graphene heterojunction on silicon. Journal of Lightwave Technology, 37(22), 5641–5646. https://doi.org/10.1109/JLT.2019.2895100.

    Article  Google Scholar 

  4. Bijalwan, A., & Rastogi, V. (2018). Gold–aluminum-based surface plasmon resonance sensor with a high quality factor and figure of merit for the detection of hemoglobin. Applied Optics, 57(31), 9230–9237. https://doi.org/10.1364/AO.57.009230.

    Article  Google Scholar 

  5. Zafar, R., Nawaz, S., Singh, G., & d’Alessandro, A. (2018). Plasmonics-based refractive index sensor for detection of hemoglobin concentration. IEEE Sensors Journal, 18(11), 4372–4377. https://doi.org/10.1109/JSEN.2018.2826040.

    Article  Google Scholar 

  6. Lidiya, A. E., Raja, R. V. J., Pham, V. D., Ngo, Q. M., & Vigneswaran, D. (2019). Detecting hemoglobin content blood glucose using surface plasmon resonance in D-shaped photonic crystal fiber. Optical Fiber Technology, 50, 132–138. https://doi.org/10.1016/j.yofte.2019.03.009.

    Article  Google Scholar 

  7. Friebel, M., & Meinke, M. (2006). Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250 to 1100 nm dependent on concentration. Applied Optics, 45(12), 2838–2842. https://doi.org/10.1364/AO.45.002838.

    Article  Google Scholar 

  8. Lazareva, E. N., & Tuchin, V. V. (2018). Measurement of refractive index of hemoglobin in the visible/NIR spectral range. Journal of Biomedical Optics, 23(3), 035004. https://doi.org/10.1117/1.JBO.23.3.035004.

    Article  Google Scholar 

  9. Kedenburg, S., Vieweg, M., Gissibl, T., & Giessen, H. (2012). Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Optical Materials Express, 2(11), 1588–1611. https://doi.org/10.1364/OME.2.001588.

    Article  Google Scholar 

  10. Prahl, S. (1999). Optical absorption of hemoglobin. Retrieved May 26, 2014 from http://omlc.ogi.edu/spectra/hemoglobin/index.html.

  11. Popescu, V. A. (2018). Application of a plasmonic biosensor for detection of human-liver tissues. Plasmonics, 13(2), 575–582. https://doi.org/10.1007/s11468-017-0546-9.

    Article  Google Scholar 

  12. Zhang, L., Gan, F., & Wang, P. (1994). Evaluation of refractive-index and material dispersion in fluoride glasses. Applied Optics, 33(1), 50–56. https://doi.org/10.1364/AO.33.000050.

    Article  Google Scholar 

  13. Li, H. H. (1976). Refractive index of alkali halides and its wavelength and temperature derivatives. Journal of Physical and Chemical Reference Data, 5(2), 329–528. https://doi.org/10.1063/1.555536.

    Article  Google Scholar 

  14. Pierce, D. T., & Spicer, W. E. (1972). Electronic structure of amorphous Si from photoemission and optical studies. Physical Review B, 5(8), 3017–3029. https://doi.org/10.1103/PhysRevB.5.3017.

    Article  Google Scholar 

  15. Kolwas, K., & Derkachova, A. (2010). Plasmonic abilities of gold and silver spherical nanoantennas in terms of size dependent multipolar resonance frequencies and plasmon damping rates. Opto-Electronics Review, 18(4), 429–437. https://doi.org/10.2478/s11772-010-0043-6.

    Article  Google Scholar 

  16. Querry, M. R. (1985). Optical constants. Contractor Report CRDC-CR-85034. Retrieved June, 198 from https://apps.dtic.mil/dtic/tr/fulltext/u2/a158623.pdf.

  17. Sharma, A. K., Rajan, R., & Gupta, B. D. (2007). Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor. Optics Communications, 274(2), 320–326. https://doi.org/10.1016/j.optcom.2007.02.030.

    Article  Google Scholar 

  18. Verma, R. K., Sharma, A. K., & Gupta, B. D. (2008). Surface plasmon resonance based tapered fiber optic sensor with different taper profiles. Optics Communications, 281(6), 1486–1491. https://doi.org/10.1016/j.optcom.2007.11.007.

    Article  Google Scholar 

  19. Ghatak, A. K., & Thyagarajan, K. (1999). Introduction to fiber optics. Cambridge: Cambridge University Press.

    Google Scholar 

  20. Madarasz, F. L., Dimmock, J. O., Dietz, N., & Bachmann, K. L. (2000). Sellmeier parameters for ZnGaP2 and GaP. Journal of Applied Physics, 87(3), 1564–1565. https://doi.org/10.1063/1.372050.

    Article  Google Scholar 

  21. Vial, A., Grimault, A. S., Macías, D., Barchiesi, D., & Chapelle, M. L. (2005). Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Physical Review B, 71, 085416. https://doi.org/10.1103/PhysRevB.71.085416.

    Article  Google Scholar 

  22. Brian, Y. M., & Choladda, V. C. (2014). Hemoglobin Concentration—EMedicine: Medscape. Retrieved February 12, 2014 from http://emedicinemedscape.com/article/2085614-overview.

  23. Popescu, V. A. (2018). Simulation of some plasmonic biosensors for detection of hemoglobin concentration in human blood. Plasmonics, 13(5), 1507–1511. https://doi.org/10.1007/s11468-017-0657-3.

    Article  Google Scholar 

  24. Amayreh, M., & Hourani, M. (2019). Direct electrochemical determination of hemoglobin in blood using iodine-coated platinum polycrystalline electrode. Analytical and Bioanalytical Chemistry Research, 6(1), 59–68. https://doi.org/10.22036/abcr.2018.125953.1198.

    Article  Google Scholar 

  25. Peck, R. L., Brolo, A. G., & Gordon, R. (2019). Absorption leads to narrower plasmonic resonances. Journal of the Optical Society of America B, 36(8), F117–F122. https://doi.org/10.1364/JOSAB.36.00F117.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasile A. Popescu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popescu, V.A., Sharma, A.K. New Plasmonic Biosensors for Determination of Human Hemoglobin Concentration in Blood. Sens Imaging 21, 5 (2020). https://doi.org/10.1007/s11220-019-0269-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-019-0269-4

Keywords

Navigation