Skip to main content
Log in

PHEBUS on Bepi-Colombo: Post-launch Update and Instrument Performance

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Bepi-Colombo mission was launched in October 2018, headed for Mercury. This mission is a collaboration between Europe and Japan. It is dedicated to the study of Mercury and its environment. It will be inserted into Mercury orbit in December 2025 after a 7-year long cruise. Probing of Hermean Exosphere By Ultraviolet Spectroscopy (PHEBUS) is an ultraviolet Spectrograph and is one of the 11 instruments on-board the Mercury Planetary Orbiter (MPO). It is dedicated to the study of the exosphere of Mercury, its composition, dynamics and variability and its interface with the surface of the planet and the solar wind. The PHEBUS instrument contains four distinct detectors covering the spectral range from 55 nm up to 315 nm and two additional narrow windows at 404 nm and 422 nm. It also has a one-degree of freedom mechanism that allows observations along a cone with an half angle of \(80^{\circ }\). This paper follows a detailed presentation of the PHEBUS instrument design that was presented by Chassefière et al. (Planet. Space Sci. 58:201–223, 2010).

Here we present an update of the science objectives and measurement requirements following the results published by the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) mission. We also present results of the ground calibration campaigns of the flight unit that is currently on-board MPO.

In the last part, we present some details of the observations that will be performed during the cruise to Mercury, such as stellar observation campaigns, interplanetary background observations and planetary flybys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • M. Benna, P.R. Mahaffy, J.S. Halekas, R.C. Elphic, G.T. Delory, Variability of helium, neon, and argon in the lunar exosphere as observed by the LADEE NMS instrument. Geophys. Res. Lett. 42, 3723–3729 (2015). https://doi.org/10.1002/2015GL064120

    Article  ADS  Google Scholar 

  • J.L. Bertaux, R. Lallement, V.G. Kurt, E.N. Mironova, Characteristics of the local interstellar hydrogen determined from PROGNOZ 5 and 6 interplanetary Lyman-alpha line profile measurements with a hydrogen absorption cell. Astron. Astrophys. 150(1), 1–20 (1985)

    ADS  Google Scholar 

  • J.L. Bertaux et al., SWAN: a study of solar wind anisotropies on SOHO with Lyman alpha sky mapping. Sol. Phys. 162(1–2), 403–439 (1995)

    Article  ADS  Google Scholar 

  • T.A. Bida, R.M. Killen, Observations of minor species Al and Fe in Mercury’s exosphere. Icarus 289, 227–238 (2017)

    Article  ADS  Google Scholar 

  • T.A. Bida, R.M. Killen, T.H. Morgan, Discovery of calcium in the Mercury’s atmosphere. Nature 404, 159,–161 (2000)

    Article  ADS  Google Scholar 

  • D.T. Blewett, et al., Hollows on Mercury: MESSENGER evidence for geologically recent volatile-related activity. Science 333(6051), 1856–1859 (2011). https://doi.org/10.1126/science.1211681. 2011

    Article  ADS  Google Scholar 

  • A.L. Broadfoot, D.E. Shemansky, S. Kumar, Mercury’s atmosphere from Mariner 10: preliminary results. Science 185(4146), 166–169 (1974)

    Article  ADS  Google Scholar 

  • A.L. Broadfoot, D.E. Shemansky, S. Kumar, Mariner 10: Mercury atmosphere. Geophys. Res. Lett. 3, 577–580 (1976)

    Article  ADS  Google Scholar 

  • M.H. Burger, R.M. Killen, W.E. McClintock, R.J. Vervack, A.W. Merkel, A.L. Sprague, M. Sarantos, Modeling MESSENGER observations of calcium in Mercury’s exosphere. J. Geophys. Res. 117, E00L11 (2012). https://doi.org/10.1029/2012JE004158

    Article  ADS  Google Scholar 

  • M.H. Burger, R.M. Killen, W.E. McClintock, A.W. Merkel, R.J. Vervack, T.A. Cassidy, M. Sarantos, Seasonal variations in Mercury’s dayside calcium exosphere. Icarus 238, 51–58 (2014)

    Article  ADS  Google Scholar 

  • T.A. Cassidy, A.W. Merkel, M.H. Burger, M. Sarantos, R.M. Killen, W.E. McClintock, R.J. Vervack, Mercury’s seasonal sodium exosphere: MESSENGER orbital observations. Icarus 248, 547–559 (2015)

    Article  ADS  Google Scholar 

  • T.A. Cassidy, W.E. McClintock, R.M. Killen, M. Sarantos, A.W. Merkel, R.J. Vervack, M.H. Burger, A cold-pole enhancement in Mercury’s sodium exosphere. Geophys. Res. Lett. 43(21), 11,121–11,128 (2016). https://doi.org/10.1002/2016GL071071

    Article  Google Scholar 

  • N.L. Chabot, C.M. Ernst, B.W. Denevi, J.K. Harmon, S.L. Murchie, D.T. Blewett, S.C. Solomon, E.D. Zhong, Areas of permanent shadow in Mercury’s south polar region ascertained by MESSENGER orbital imaging. Geophys. Res. Lett. 39, L09204 (2012). https://doi.org/10.1029/2012GL051526

    Article  ADS  Google Scholar 

  • N.L. Chabot, C.M. Ernst, J.K. Harmon, S.L. Murchie, S.C. Solomon, D.T. Blewett, B.W. Denevi, Craters hosting radar-bright deposit in Mercury’s north polar region: areas of persistent shadow determined from MESSENGER images. J. Geophys. Res. 119, 26–36 (2013). https://doi.org/10.1029/2012JE004172

    Article  Google Scholar 

  • E. Chassefière, J-L. Maria, J-P. Goutail, E. Quémerais, F. Leblanc et al., PHEBUS: a double ultraviolet spectrometer to observe Mercury’s exosphere. Planet. Space Sci. 58, 201–223 (2010)

    Article  ADS  Google Scholar 

  • J.K. Harmon, M.A. Slade, Radar mapping of Mercury: full-disk images and polar anomalies. Science 258, 640 (1992). https://doi.org/10.1026/science.258.5082.640

    Article  ADS  Google Scholar 

  • J.K. Harmon, M.A. Slade, R.A. Velez, A. Crespo, M.J. Dryer, J.M. Johnson, Radar mapping of Mercury’s polar anomalies. Nature 369, 213–215 (1994)

    Article  ADS  Google Scholar 

  • A.R. Hendrix, C.J. Hansen, Ultraviolet observations of Phoebe from Cassini UVIS. Icarus 193, 323–333 (2008)

    Article  ADS  Google Scholar 

  • R.M. Killen, J.M. Hahn, Impact vaporization as a possible source of Mercury’s calcium exosphere. Icarus 250, 230–237 (2015)

    Article  ADS  Google Scholar 

  • R.M. Killen, D. Shemansky, N. Mouawad, Expected emission from Mercury’s exospheric species, and their ultraviolet-visible signatures. Astrophys. J. Suppl. Ser. 181, 351–359 (2009)

    Article  ADS  Google Scholar 

  • D. Koutroumpa, E. Quémerais, S. Ferron, Global distribution of the solar wind flux and velocity from SOHO/SWAN during SC-23 and SC-24. Geophys. Res. Lett. 46(8), 4114–4121 (2019). https://doi.org/10.1029/2019GL082402

    Article  ADS  Google Scholar 

  • R. Lallement, E. Quémerais, J.L. Bertaux, S. Ferron, D. Koutroumpa, R. Pellinen, Deflection of the interstellar neutral hydrogen flow across the heliospheric interface. Science 307(5714), 1447–1449 (2005)

    Article  ADS  Google Scholar 

  • D.J. Lawrence, W.C. Feldman, J.O. Goldsten, S. Maurice, P.N. Peplowski, B.J. Anderson et al., Evidence of water ice near Mercury’s north pole from MESSENGER neutrons spectrometer measurements. Science 339, 292 (2013). https://doi.org/10.1126/science.1229953

    Article  ADS  Google Scholar 

  • F. Leblanc, J-Y. Chaufray, Mercury and Moon He exospheres: analysis and modeling. Icarus 216, 551–559 (2011)

    Article  ADS  Google Scholar 

  • F. Leblanc, R.E. Johnson, Mercury exosphere I. Global circulation model of its sodium component. Icarus 209, 280–300 (2010)

    Article  ADS  Google Scholar 

  • W.E. McClintock, E.T. Bradley, R.J. Vervack, R.M. Killen, A.L. Sprague, N.R. Izenberg, S.C. Solomon, Mercury’s exosphere: observations during MESSENGER’s first Mercury flyby. Science 321, 92 (2008)

    Article  ADS  Google Scholar 

  • W.E. McClintock, R.J. Vervack, E.T. Bradley, R.M. Killen, N. Moawad, A.L. Sprague, M.H. Burger, S.C. Solomon, N.R. Izenberg, MESSENGER observations of Mercury’s exosphere: detection of magnesium and distribution of constituents. Science 324, 610–613 (2009)

    ADS  Google Scholar 

  • W.E. McClintock, T.A. Cassidy, A.W. Merkel, R.M. Killen, M.H. Burger, R.J. Vervack, Observations of Mercury’s exosphere: composition and structure, in Mercury: The View after MESSENGER, ed. by S. Solomon, L. Nittler, B. Anderson. Cambridge Planetary Science (Cambridge University Press, Cambridge, 2018), pp. 371–406. https://doi.org/10.1017/9781316650684.015

    Chapter  Google Scholar 

  • A.W. Merkel, T.A. Cassidy, R.J. Vervack, W.E. McClintock, M. Sarantos, M.H. Burger, R.M. Killen, Seasonal variations of Mercury’s magnesium dayside exosphere from MESSENGER observations. Icarus 281, 46–54 (2017)

    Article  ADS  Google Scholar 

  • A.W. Merkel, R.J. Vervack, R.M. Killen, T.A. Cassidy, W.E. McClintock, L.R. Nittler, M.H. Burger, Evidence of connection Mercury’s magnesium exosphere to its magnesium-rich surface terrane. Geophys. Res. Lett. 45, 6790–6797 (2018). https://doi.org/10.1029/2018GL078407

    Article  ADS  Google Scholar 

  • A. Mura, P. Wurz, H.I.M. Lichtenegger, H. Schleicher, H. Lammer, D. Delcourt, A. Milillo, S. Orsini, S. Massetti, M.L. Khodachenko, The sodium exosphere of Mercury: comparison between observations during Mercury’s transit and model results. Icarus 200, 1–11 (2009)

    Article  ADS  Google Scholar 

  • G.A. Neumann, J.F. Cavanaugh, X. Sun, E.M. Mazarico, D.E. Smith, M.T. Zuber, D. Mao, D.A. Paige, S.C. Solomon, C.M. Ernst, O.S. Barnouin, Brightness and dark polar deposit on Mercury: evidence for surface volatiles. Science 339, 296 (2013). https://doi.org/10.1126/science.1229764

    Article  ADS  Google Scholar 

  • S. Orsini, V. Mangano, A. Milillo, C. Plainaki, A. Mura, J.M. Raines, E. DeAngelis, R. Rispoli, F. Lazzarotto, A. Aronica, Mercury sodium exospheric emission as a proxy for solar perturbations transit. Sci. Rep. 8, 928 (2018)

    Article  ADS  Google Scholar 

  • A.E. Potter, T.H. Morgan, Discovery of sodium in the atmosphere of Mercury. Science 229, 651–653 (1985)

    Article  ADS  Google Scholar 

  • A.E. Potter, R.M. Killen, T.H. Morgan, Solar radiation acceleration effects on Mercury sodium emission. Icarus 186, 571–580 (2007)

    Article  ADS  Google Scholar 

  • E. Quémerais, J.L. Bertaux, R. Lallement, M. Berthé, E. Kyr öl ä, W. Schmidt, Interplanetary Lyman \(\alpha \) Line Profiles derived from SWAN/SOHO H Cell measurements: 1. The Full Sky Velocity Field. J. Geophys. Res. Space Phys. 104, 12585–12603 (1999)

    Article  ADS  Google Scholar 

  • E. Quémerais, R. Lallement, S. Ferron, D. Koutroumpa, J.-L. Bertaux, E. Kyrölä, W. Schmidt, Interplanetary hydrogen absolute ionization rates: retrieving the solar wind mass flux latitude and cycle dependence with SWAN/SOHO maps. J. Geophys. Res. Space Phys. 111(A9), A09114 (2006)

    Article  ADS  Google Scholar 

  • E. Quémerais, V. Izmodenov, D. Koutroumpa, Y. Malama, Time dependent model of the interplanetary Lyman \(\alpha \) glow: applications to the SWAN data. Astron. Astrophys. 488, 351–359 (2008)

    Article  ADS  Google Scholar 

  • M. Sarantos, R.M. Killen, W.E. McClintock, E.T. Bradley, R.J. Vervack, M. Benna, J.A. Slavin, Limits to Mercury’s magnesium exosphere from MESSENGER second flyby observations. Planet. Space Sci. 59, 1992–2003 (2011)

    Article  ADS  Google Scholar 

  • M. Snow et al., A new catalog of ultraviolet stellar spectra for calibration, in Cross-Calibration of Far UV Spectra of Solar System Objects and the Heliosphere, ed. by E. Quémerais, M. Snow, R.M. Bonnet. ISSI Scientific Report Series, vol. SR–013 (2013)

    Google Scholar 

  • S. Soter, J. Ulrichs, Rotation and heating of the planet Mercury. Nature 214(5095), 1315–1316 (1967). https://doi.org/10.1038/2141315a0

    Article  ADS  Google Scholar 

  • A. Stern, The Lunar atmosphere: history, status, current problems, and context. Rev. Geophys. 37(4), 453–491 (1999)

    Article  ADS  Google Scholar 

  • R.J. Vervack, W.E. McClintock, R.M. Killen, A.L. Sprague, B.J. Anderson, M.H. Burger, E.T. Bradley, N. Mouawad, S.C. Solomon, N.R. Izenberg, Mercury’s complex exosphere: results from MESSENGER’s third flyby. Science 329, 672–675 (2010)

    Article  ADS  Google Scholar 

  • R.J. Vervack, R.M. Killen, W.E. McClintock, A.W. Merkel, M.H. Burger, T.A. Cassidy, M. Sarantos, New discoveries from MESSENGER and insights into Mercury’s exosphere. Geophys. Res. Lett. 43, 11,545–11,551 (2016). https://doi.org/10.1002/2016GL071284

    Article  Google Scholar 

  • S.Z. Weider, L.R. Nittler, R.D. Starr, E.J. Crapster-Pregont, P.N. Peplowski, N.W. Denevi, J.W. Head, P.K. Byrne, S.A. Hauk II, D.S. Ebel, S.C. Solomon, Evidence for geochemical terranes on Mercury: global mapping of major elements with MESSENGER’s X-ray spectrometer. Earth Planet. Sci. Lett. 416, 109–120 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Quémerais.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The BepiColombo mission to Mercury

Edited by Johannes Benkhoff, Go Murakami and Ayako Matsuoka

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quémerais, E., Chaufray, JY., Koutroumpa, D. et al. PHEBUS on Bepi-Colombo: Post-launch Update and Instrument Performance. Space Sci Rev 216, 67 (2020). https://doi.org/10.1007/s11214-020-00695-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00695-6

Keywords

Navigation