Skip to main content
Log in

Venus Interior Structure and Dynamics

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

No two rocky bodies offer a better laboratory for exploring the conditions controlling interior dynamics than Venus and Earth. Their similarities in size, density, distance from the sun, and young surfaces would suggest comparable interior dynamics. Although the two planets exhibit some of the same processes, Venus lacks Earth’s dominant process for losing heat and cycling volatiles between the interior and the surface and atmosphere: plate tectonics. One commonality is the size and number of mantle plume features which are inferred to be active today and arise at the core mantle boundary. Such mantle plumes require heat loss from the core, yet Venus lacks a measurable interior dynamo. There is evidence for plume-induced subduction on Venus, but no apparent mosaic of moving plates. Absent plate tectonics, one essential question for interior dynamics is how did Venus obtain its young resurfacing age? Via catastrophic or equilibrium processes? Related questions are how does it lose heat via past periods of plate tectonics, has it always had a stagnant lid, or might it have an entirely different mode of heat loss? Although there has been no mission dedicated to surface and interior processes since the Magellan mission in 1990, near infrared surface emissivity data that provides information on the iron content of the surface mineralogy was obtained fortuitously from Venus Express. These data imply both the presence of continental-like crust, and thus formation in the presence of water, and recent volcanism at mantle hotspots. In addition, the study of interior dynamics for both Earth and exoplanets has led to new insights on the conditions required to initiate subduction and develop plate tectonics, including the possible role of high temperature lithosphere, and a renewed drive to reveal why Venus and Earth differ. Here we review current data that constrains the interior dynamics of Venus, new insights into its interior dynamics, and the data needed to resolve key questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • K. Altwegg et al., 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347, 1261952 (2015)

    Google Scholar 

  • F.S. Anderson, S.E. Smrekar, Tectonic effects of climate change on Venus. J. Geophys. Res., Planets 104(E12), 30743–30756 (1999)

    ADS  Google Scholar 

  • F.S. Anderson, S.E. Smrekar, Global mapping of crustal and lithospheric thickness on Venus. J. Geophys. Res., Planets 111(E8), E08006 (2006). https://doi.org/10.1029/2004JE002395

    ADS  Google Scholar 

  • J.C. Andrews-Hanna, M.T. Zuber, W.B. Banerdt, The Borealis basin and the origin of the martian crustal dichotomy. Nature 453, 1212–1215 (2008). https://doi.org/10.1038/nature07011

    ADS  Google Scholar 

  • J.C. Andrews-Hanna, S.E. Smrekar, E. Mazarico, Venus gravity gradiometry: plateaus, chasmata, coronae, and the need for a better global dataset, in 47th Lunar and Planetary Science Conference, The Woodlands, TX (2016). Abstract #1903

    Google Scholar 

  • S. Androvandi, A. Davaille, A. Limare, A. Fouquier, C. Marais, At least three scales of convection in a mantle with strongly temperature-dependent viscosity. Phys. Earth Planet. Inter. 188, 132–141 (2011)

    ADS  Google Scholar 

  • M. Armann, P.J. Tackley, Simulating the thermochemical magmatic and tectonic evolution of Venus’s mantle and lithosphere: two-dimensional models. J. Geophys. Res. 117, E12003 (2012). https://doi.org/10.1029/2012JE004231

    ADS  Google Scholar 

  • S. Azuma, I. Katayama, T. Nakakuki, Rheological decoupling at the Moho and implication to Venusian tectonics. Sci. Rep. 4, 4403 (2014)

    ADS  Google Scholar 

  • K.H. Baines et al., The atmospheres of the terrestrial planets: Clues to the origins and early evolution of Venus, Earth, and Mars, in Comparative Climatology of Terrestrial Planets, ed. by S.J. Mackwell et al. (Univ. of Arizona, Tucson, 2013), pp. 137–160

    Google Scholar 

  • W.B. Banerdt, M.P. Golombek, Deformational models of rifting and folding on Venus. J. Geophys. Res. 93, 4759–4772 (1988)

    ADS  Google Scholar 

  • W.B. Banerdt, G.E. McGill, M.T. Zuber, Plains tectonics on Venus, in Venus II, ed. by S.W. Bouguer et al.(U. of Ariz. Press, Tucson, 1997), pp. 797–844

    Google Scholar 

  • D. Bercovici, Y. Ricard, Plate tectonics, damage and inheritance. Nature 508, 513–516 (2014)

    ADS  Google Scholar 

  • F. Bilotti, J. Suppe, The global distribution of wrinkle ridges on Venus. Icarus 139(1), 137–157 (1999)

    ADS  Google Scholar 

  • D.L. Bindschadler, G. Schubert, W.M. Kaula, Coldspots and hotspots: global tectonics and mantle dynamics of Venus. J. Geophys. Res. 9, 13,495–13,532 (1992)

    ADS  Google Scholar 

  • E. Bjonnes, V. Hansen, B. James, J. Swenson, Equilibrium resurfacing of Venus: results from new Monte Carlo modeling and implications for Venus surface histories. Icarus 217(2), 451–461 (2012). https://doi.org/10.1016/j.icarus.2011.03.033

    ADS  Google Scholar 

  • W.F. Bottke, D. Vokrouhlicky, B. Ghent, S. Mazrouei, S. Robbins, S. Marchi, On Asteroid impacts, crater scaling laws, and proposed younger surface age for Venus, in XLVII Lunar and Planetary Sci. Conf. (2016). Abst. #2036

    Google Scholar 

  • D. Breuer, S. Labrosse, T. Spohn, Thermal evolution and magnetic field generation in terrestrial planets and satellites. Space Sci. Rev. 152, 449–500 (2010)

    ADS  Google Scholar 

  • C.D. Brown, R.E. Grimm, Lithospheric rheology and flexure at Artemis Chasma, Venus. J. Geophys. Res., Planets 101(E5), 12697–12708 (1996)

    ADS  Google Scholar 

  • W.R. Buck, Global decoupling of crust and mantle: implications for topography, geoid and mantle viscosity on Venus. Geophys. Res. Lett. 19, 2111–2114 (1992)

    ADS  Google Scholar 

  • H.P. Bunge, M.A. Richards, J.R. Baumgardner, A sensitivity study of 3-dimensional spherical mantle convection at 108 Rayleigh number—effects of depth-dependent viscosity, heating mode, and an endothermic phase change. J. Geophys. Res. 102(B6), 11991–12007 (1997)

    ADS  Google Scholar 

  • E.B. Burov, A.B. Watts, The long-term strength of continental lithosphere: “jelly sandwich” or “crème Brûlée”? GSA Today 16(1), 60 (2006). https://doi.org/10.1130/1052-5173

    Google Scholar 

  • I.H. Campbell, S.R. Taylor, No water, no granites—no ocean, no continents. Geophys. Res. Lett. 10(11), 1061–1064 (1983)

    ADS  Google Scholar 

  • B.A. Campbell, G.A. Morgan, J.L. Whitten, L.M. Carter, L.S. Glaze, D.B. Campbell, Pyroclastic flow deposits on Venus as indicators of renewed magmatic activity. J. Geophys. Res., Planets 122, 1580–1596 (2017). https://doi.org/10.1002/2017JE005299

    ADS  Google Scholar 

  • S.C. Cande, D.R. Stegman, Indian and African plate motions driven by the push force of La Réunion plume head. Nature 475, 47–52 (2011)

    ADS  Google Scholar 

  • J. Chantel, G. Manthilake, D. Andrault, D. Novella, T. Yu, Y. Wang, Experimental evidence supports mantle partial melting in the asthenosphere. Sci. Adv. 2, e1600246 (2016). https://doi.org/10.1126/sciadv.1600246

    ADS  Google Scholar 

  • U.R. Christensen, J. Aubert, Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Int. 166(1), 97–114 (2006)

    ADS  Google Scholar 

  • A.C. Correia, J. Laskar, Long-term evolution of the spin of Venus: II. Numerical simulations. Icarus 163(1), 24–45 (2003)

    ADS  Google Scholar 

  • V. Courtillot, A. Davaille, J. Besse, J. Stock, Three distinct types of hot spots into the Earth’s mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003). 2003

    ADS  Google Scholar 

  • F.B. Crameri, J.P. Kaus, Parameters that control lithospheric—scale thermal localization on terrestrial planets. Geophys. Res. Lett. 37, L09308 (2010)

    ADS  Google Scholar 

  • F. Crameri, P.J. Tackley, Subduction initiation from a stagnant lid and global overturn: new insights from numerical models with a free surface. Prog. Earth Planet. Sci. 3, 30 (2016)

    ADS  Google Scholar 

  • F. Crameri, P.J. Tackley, I. Meilick, T.V. Gerya, B.J.P. Kaus, A free plate surface and weak oceanic crust produce single-sided subduction on Earth. Geophys. Res. Lett. 39, L03306 (2012)

    ADS  Google Scholar 

  • J. Cutts, The Keck Institute for Space Studies (KISS) Venus Seismology Study Team, Probing the Interior Structure of Venus (2015)

    Google Scholar 

  • A. Davaille, Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 402, 756–760 (1999)

    ADS  Google Scholar 

  • A. Davaille, C. Jaupart, Transient high-Rayleigh number thermal convection with large viscosity variations. J. Fluid Mech. 253, 141–166 (1993)

    ADS  Google Scholar 

  • A. Davaille, S.E. Smrekar, The importance of plumes to trigger subduction of a sluggish lid: examples from laboratory experiments and planets. Geophys. Res. Abstr. 16, EGU2014-11967-1 (2014)

    Google Scholar 

  • A. Davaille, E. Stutzmann, G. Silveira, J. Besse, V. Courtillot, Convective patterns under the Indo-Atlantic «box». Earth Planet. Sci. Lett. 239, 233–252 (2005)

    ADS  Google Scholar 

  • A. Davaille, S.E. Smrekar, S. Tomlinson, Experimental and observational evidence for plume-induced subduction on Venus. Nat. Geosci. 10, 349–355 (2017)

    ADS  Google Scholar 

  • S. Demouchy, N. Bolfan-Casanova, Distribution and transport of hydrogen in the lithospheric mantle: a review. Lithos 240–243, 402–425 (2016)

    Google Scholar 

  • A.R. Dobrovolskis, A.P. Ingersoll, Atmospheric tides and the rotation of Venus. Icarus 41, 1 (1980)

    ADS  Google Scholar 

  • T.M. Donahue, J.B. Pollack, Origin and evolution of the atmosphere of Venus, in Venus, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (Univ. AZ Press, Tucson, 1983)

    Google Scholar 

  • P. Driscoll, D. Bercovici, Divergent evolution of Earth and Venus: influence of degassing, tectonics, and magnetic fields. Icarus 226, 1447–1464 (2013)

    ADS  Google Scholar 

  • P. Driscoll, D. Bercovici, On the thermal and magnetic histories of Earth and Venus: influences of melting, radioactivity, and conductivity. Phys. Earth Planet. Inter. 236, 36–51 (2014)

    ADS  Google Scholar 

  • C. Dumoulin, G. Tobie, O. Verhoeven, P. Rosenblatt, N. Rambaux, Tidal constraints on the interior of Venus. J. Geophys. Res., Planets 122, 1338–1352 (2017)

    ADS  Google Scholar 

  • D.J. Dunlop, O. Ozdemir, Rock Magnetism: Fundamentals and Frontiers (Cambridge University Press, Cambridge, 1997), p. 573

    Google Scholar 

  • L. Dupeyrat, C. Sotin, The effect of the transformation of basalt to eclogite on the internal dynamics of Venus. Planet. Space Sci. 43, 909–921 (1995)

    ADS  Google Scholar 

  • M.D. Dyar, J. Helbert, T. Boucher, D. Wendler, I. Walter, T. Widemann, E. Marcq, A. Maturilli, S. Ferrari, M. D’Amore, N. Müller, S. Smrekar, Mapping Venus mineralogy and chemistry in situ from orbit with six-window VNIR spectroscopy, in 15th Meeting of the Venus Exploration Analysis Group (2017). Abstract #8004

    Google Scholar 

  • D. Dymkova, T. Gerya, Porous fluid flow enables oceanic subduction initiation on Earth. Geophys. Res. Lett. 40(21), 5671–5676 (2013)

    ADS  Google Scholar 

  • L.T. Elkins-Tanton, S.E. Smrekar, P.C. Hess, E.M. Parmentier, Volcanism and volatile recycling on a one-plate planet: applications to Venus. J. Geophys. Res. 112, E04S06 (2007). https://doi.org/10.1029/2006JE002793

    Google Scholar 

  • B.J. Foley, P.E. Driscoll, Whole planet coupling between climate, mantle, and core: implications for rocky planet evolution. Geochem. Geophys. Geosyst. 17, 1885–1914 (2016)

    ADS  Google Scholar 

  • D.W. Forsyth, Subsurface loading and estimates of the flexural rigidity of continental lithosphere. J. Geophys. Res. B, Solid Earth Planets 90(B14), 2623–2632 (1985)

    Google Scholar 

  • A.C. Fowler, S.B.G. O’Brien, A mechanism for episodic subduction on Venus. J. Geophys. Res. 101, 4755–4763 (1996)

    ADS  Google Scholar 

  • S. Franck, A. Block, W. von Bloh, C. Bounama, H.J. Schellnhuber, Y. Svirezhev, Habitable zone for Earth-like planets in the solar system. Planet. Space Sci. 48(11), 1099–1105 (2000)

    ADS  Google Scholar 

  • R. Garcia, P. Lognonné, X. Bonnin, Detecting atmospheric perturbations produced by Venus quakes. Geophys. Res. Lett. 32(16), 1944–8007 (2005)

    Google Scholar 

  • T.V. Gerya, Plume-induced crustal convection: 3D thermomechanical mode and implications for the origin of novae and coronae on Venus. Earth Planet. Sci. Lett. 391, 183192 (2014)

    Google Scholar 

  • T.V. Gerya, R.J. Stern, S.V. Sobolev, S.A. Whattam, Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature 527, 221–225 (2015)

    ADS  Google Scholar 

  • R. Ghail, Rheological and petrological implications for a stagnant lid regime on Venus. Planet. Space Sci. 113–114, 2–9 (2015). https://doi.org/10.1016/j.pss.2015.02.005

    Google Scholar 

  • R.C. Ghail et al., VenSAR on EnVision: taking Earth observation radar to Venus. Int. J Appl. Earth Obs. Geoinf. (2017). https://doi.org/10.1016/j.jag.2017.02.00

    Google Scholar 

  • E. Giannandrea, U.R. Christensen, Variable viscosity convection experiments with a stress-free upper boundary and implications for the heat transport in the Earth’s mantle. Phys. Earth Planet. Inter. 78, 139–152 (1993)

    ADS  Google Scholar 

  • C. Gillmann, P. Tackley, Atmosphere/mantle coupling and feedbacks on Venus. J. Geophys. Res., Planets 119, 1189–1217 (2014)

    ADS  Google Scholar 

  • C. Gillmann, E. Chassefiere, P. Lognonné, A consistent picture of early hydrodynamic escape of Venus atmosphere explaining present Ne and Ar isotopic ratios and low oxygen atmospheric content. Earth Planet. Sci. Lett. 286(3–4), 503–513 (2009)

    ADS  Google Scholar 

  • C. Gillmann, G.J. Golabek, P.J. Tackley, Effect of a single large impact on the coupled atmosphere-interior evolution of Venus. Icarus 268, 295–312 (2016)

    ADS  Google Scholar 

  • M.S. Gilmore, N. Mueller, J. Helbert, VIRTIS emissivity of Alpha Regio, Venus, with implications for tessera composition. Icarus 254, 350–361 (2015). https://doi.org/10.1016/j.icarus.2015.04.008

    ADS  Google Scholar 

  • M. Gilmore, A. Treiman, J. Helbert, S. Smrekar, Venus surface composition constrained by observation and experiment. Space Sci. Rev. (2017). https://doi.org/10.1007/s11214-017-0370-8

    Google Scholar 

  • L.S. Glaze, E.R. Stofan, S.E. Smrekar, S.M. Bologa, Insights into corona formation through statistical analyses. J. Geophys. Res. 107, E12 (2002). https://doi.org/10.1029/2002JE001904

    Google Scholar 

  • G.J. Golabek, T. Keller, T.V. Gerya, G. Zhu, P.J. Tackley, J.A.D. Connolly, Origin of the martian dichotomy and Tharsis from a giant impact causing massive magmatism. Icarus (USA) 215(1), 346–357 (2011)

    ADS  Google Scholar 

  • S. Goossens, F.G. Lemoine, P. Rosenblatt, S. Lebonnois, E. Mazarico, Analysis of Magellan and Venus Express tracking data for Venus gravity field determination, in 15th Meeting of the Venus Exploration Analysis Group (2017). Abstract #8036

    Google Scholar 

  • R.E. Grimm, R.J. Phillips, Gravity anomalies, compensation mechanisms, and the geodynamics of Western Ishtar Terra, Venus. J. Geophys. Res. 96, 8305–8324 (1991)

    ADS  Google Scholar 

  • P.M. Grinrod, F. Nimmo, E.R. Stofan, J.E. Guest, Strain at radially fractured centers on Venus. J. Geophys. Res. 110, E12002 (2005). https://doi.org/10.1029/2005JE002416

    ADS  Google Scholar 

  • L. Guillou, C. Jaupart, On the effect of continents on mantle convection. J. Geophys. Res. 100, 24217–24238 (1995)

    ADS  Google Scholar 

  • K. Hamano, Y. Abe, H. Genda, Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497(7451), 607–610 (2013). https://doi.org/10.1038/nature12163

    ADS  Google Scholar 

  • V.L. Hansen, R.J. Phillips, Tectonics and volcanism of eastern Aphrodite Terra, Venus—no subduction, no spreading. Science 260(5107), 526–530 (1993)

    ADS  Google Scholar 

  • L.B. Harris, J.H. Bedard, Interactions between continent-like ‘drift’, rifting and mantle flow on Venus: gravity interpretations and Earth analogues, in Special Publications, vol. 401 (Geological Society, London, 2015), pp. 327–356

    Google Scholar 

  • J. Helbert, N. Muller, P. Kostama et al., Surface brightness seen by VIRTIS on Venus Express and implications for the evolution of the Lada Terra region, Venus. Geophys. Res. Lett. 35(11), L11201 (2008)

    ADS  Google Scholar 

  • S. Hensley, S. Smrekar, M.D. Dyar, D. Perkovic, B. Campbell, M. Younis, Venus Interferometric Synthetic Aperture Radar (VISAR) for the Venus Origins Explorer, in 15th Meeting of the Venus Exploration Analysis Group (2017). Abstract #8020

    Google Scholar 

  • R.R. Herrick, M.E. Rumpf, Postimpact modification by volcanic or tectonic processes as the rule, not the exception, for Venusian craters. J. Geophys. Res. 116, E02004 (2011). https://doi.org/10.1029/2010JE003722

    ADS  Google Scholar 

  • R. Hide, The hydrodynamics of the Earth’s core. Phys. Chem. Earth 1, 94–137 (1956)

    Google Scholar 

  • N. Hilairet, B. Reynard, Y. Wang, I. Daniel, S. Merkel, N. Nishiyama, S. Petitgirard, High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science 318(5858), 1910–1913 (2007)

    ADS  Google Scholar 

  • D. Hoening, T. Spohn, Continental growth and mantle hydration as intertwined feedback cycles in the thermal evolution of Earth. Phys. Earth Planet. Inter. 255, 27–49 (2016). https://doi.org/10.1016/j.pepi.2016.03.010

    ADS  Google Scholar 

  • T. Hoogenboom, G.A. Houseman, Rayleigh–Taylor instability as a mechanism for corona formation on Venus. Icarus 180, 292–307 (2006). https://doi.org/10.1016/j.icarus.2005.11.001

    ADS  Google Scholar 

  • J. Huang, H. Yang, S. Zhong, Constraints of the topography, gravity and volcanism on Venusian mantle dynamics and generation of plate tectonics. Earth Planet. Sci. Lett. 362, 207–214 (2013)

    ADS  Google Scholar 

  • M. Ivanov, J.W. Head, Lada Terra rise and Quetzalpetlatl Corona: a region of long-lived mantle upwelling and recent volcanic activity on Venus. Planet. Space Sci. 58, 1880–1894 (2010)

    ADS  Google Scholar 

  • S.A. Jacobson, D.C. Rubie, J. Hernlund, A. Morbidelli, M. Nakajima, Formation, stratification, and mixing of the cores of Earth and Venus. Earth Planet. Sci. Lett. 474, 375–386 (2017)

    ADS  Google Scholar 

  • P.B. James, M.T. Zuber, R.J. Phillips, Crustal thickness and support of topography on Venus. J. Geophys. Res. 118, 859–875 (2013). https://doi.org/10.1029/2012JE004237

    Google Scholar 

  • A.M. Jellinek, A. Lenardic, M. Manga, The influence of interior mantle temperature on the structure of plumes: heads for Venus, tails for the Earth. Geophys. Res. Lett. 29(11), 1532 (2002). https://doi.org/10.1029/2001GL014624

    ADS  Google Scholar 

  • A.M. Jellinek, H.M. Gonnermann, M.A. Richards, Plume capture by divergent plate motions: implications for the distribution of hotspots, geochemistry of mid-ocean ridge basalts, and heat flux at the core-mantle boundary. Earth Planet. Sci. Lett. 205, 367–378 (2003)

    ADS  Google Scholar 

  • A. Jiménez-Díaz, J. Ruiz, J.F. Kirby, I. Romeo, R. Tejero, R. Capote, Lithospheric structure of Venus from gravity and topography. Icarus 260, 215–231 (2015)

    ADS  Google Scholar 

  • C.L. Johnson, M.A. Richards, A conceptual model for the relationship between coronae and large-scale mantle dynamics on Venus. J. Geophys. Res. 108(E6), 5058 (2003). https://doi.org/10.1029/2002JE001962

    Google Scholar 

  • C.L. Johnson, D.T. Sandwell, Lithospheric flexure on Venus. Geophys. J. Int. 119(2), 627–647 (1994)

    ADS  Google Scholar 

  • T.E. Johnson, M. Brown, B.J.P. Kaus, J.A. Van Tongeren, Delamination and recycling of Archean crust caused by gravitational instabilities. Nat. Geosci. 7, 47–52 (2014)

    ADS  Google Scholar 

  • S. Karato, P. Wu, Rheology of the upper mantle: a synthesis. Science 260(5109), 771–778 (1993). https://doi.org/10.1126/science.260.5109.771

    ADS  Google Scholar 

  • S. Karimi, A.J. Dombard, Studying lower crustal flow beneath Mead basin: implications for the thermal history and rheology of Venus. Icarus (USA) 282, 34–39 (2017)

    ADS  Google Scholar 

  • J.F. Kasting, Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74(3), 472–494 (1988)

    ADS  Google Scholar 

  • T. Keller, P.J. Tackley, Towards self-consistent modelling of the Martian dichotomy: the influence of low-degree convection on crustal thickness distribution. Icarus 202(2), 429–443 (2009)

    ADS  Google Scholar 

  • W.S. Kiefer, B.H. Hager, A mantle plume model for the equatorial highlands of Venus. J. Geophys. Res. 96, 20947–20966 (1991). 1991

    ADS  Google Scholar 

  • D.M. Koch, M. Manga, Neutrally buoyant diapirs: a model for Venus Coronae. Geophys. Res. Lett. 23, 225–228 (1996)

    ADS  Google Scholar 

  • Z. Konopkova, R.S. McWilliams, N. Gomez-Perez, A.F. Goncharov, Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature 534, 99–101 (2016)

    ADS  Google Scholar 

  • A.S. Konopliv, C.F. Yoder, Venusian k2 tidal Love number from Magellan and PVO tracking data. Geophys. Res. Lett. 23, 1857–1860 (1996)

    ADS  Google Scholar 

  • A.S. Konopliv, W.B. Banerdt, W.L. Sjogren, Venus gravity: 180th degree and order model. Icarus 39(1), 3–18 (1999). https://doi.org/10.1006/icar.1999.6086

    ADS  Google Scholar 

  • J. Korenaga, Thermal cracking and the deep hydration of oceanic lithosphere: a key to the generation of plate tectonics? J. Geophys. Res. 112, B05408 (2007)

    ADS  Google Scholar 

  • A.S. Krassilnikov, J.W. Head, Novae on Venus: geology, classification, and evolution. J. Geophys. Res., Planets 108(E9), 5108 (2003). https://doi.org/10.1029/2002je001983

    ADS  Google Scholar 

  • W. Landuyt, D. Bercovici, Variations in planetary convection via the effect of climate on damage. Earth Planet. Sci. Lett. 277, 29–37 (2009)

    ADS  Google Scholar 

  • M. Le Bars, A. Davaille, Stability of thermal convection in two superimposed miscible viscous fluids. J. Fluid Mech. 471, 339–363 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  • M. Le Bars, A. Davaille, Large interface deformation in two-layer thermal convection of miscible viscous fluids. J. Fluid Mech. 499, 75–110 (2004a)

    ADS  MATH  Google Scholar 

  • M. Le Bars, A. Davaille, Whole-layer convection in a heterogeneous planetary mantle. J. Geophys. Res. 109 (2004b). https://doi.org/10.1029/2003JB002617

  • M. Le Feuvre, M.A. Wieczorek, Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System. Icarus 214, 1–20 (2011). https://doi.org/10.1016/j.icarus.2011.03.010

    ADS  Google Scholar 

  • J. Leconte, H. Wu, K. Menou, K.N. Murray, Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars. Science 347, 632–635 (2015)

    ADS  Google Scholar 

  • A. Lenardic, J.W. Crowley, On the notion of well-defined tectonic regimes for terrestrial planets in this solar system and others. Astrophys. J. 755(2), 132 (2012)

    ADS  Google Scholar 

  • A. Lenardic, W.M. Kaula, D.L. Bindschadler, Some effects of a dry crustal flow law on numerical simulations of coupled crustal deformation and mantle convection on Venus. J. Geophys. Res. 100, 16,949–16,957 (1995)

    ADS  Google Scholar 

  • A. Lenardic, A.M. Jellinek, L.-N. Moresi, A climate induced transition in the tectonic style of a terrestrial planet. Earth Planet. Sci. Lett. 271, 34–42 (2008)

    ADS  Google Scholar 

  • G. Leone, P.J. Tackley, T.V. Gerya, D.A. May, G. Zhu, Three-dimensional simulations of the southern polar giant impact hypothesis for the origin of the Martian dichotomy. Geophys. Res. Lett. (USA) 41(24), 8736–8743 (2014)

    ADS  Google Scholar 

  • A. Limare, K. Vilella, E. Di Giuseppe, C.G. Farnetani, E. Kaminski, E. Surducan, V. Surducan, C. Neamtu, L. Fourel, C. Jaupart, Microwave-heating laboratory experiments for planetary mantle convection. J. Fluid Mech. 777, 50–67 (2015)

    ADS  Google Scholar 

  • C. Lithgow-Bertelloni, M.A. Richards, C.P. Conrad, R.W. Griffiths, Plume generation in natural thermal convection at high Rayleigh and Prandtl numbers. J. Fluid Mech. 434, 1–21 (2001)

    ADS  MATH  Google Scholar 

  • A. Loddoch, C. Stein, U. Hansen, Temporal variations in the convective style of planetary mantles. Earth Planet. Sci. Lett. 251, 79–89 (2006)

    ADS  Google Scholar 

  • R.D. Lorenz, E.P. Turtle, B. Stiles, A. Le Gall, A. Hayes, O. Aharson, C.A. Wood, E. Stofan, R. Kirk, Hypsometry of Titan. Icarus 211, 699–706 (2011). https://doi.org/10.1016/j.icarus.2010.10.002

    ADS  Google Scholar 

  • J.G. Luhmann, Y.J. Ma, M.N. Villarreal, H.Y. Wei, T.L. Zhang, The Venus–Solar wind interaction: is it purely ionospheric? Planet. Space Sci. 119, 36–42 (2015). https://doi.org/10.1016/j.pss.2015.09.012

    ADS  Google Scholar 

  • P. Machetel, P. Weber, Intermittent layered convection in a model mantle with an endothermic phase-change at 670 km. Nature 350(6313), 55–57 (1991)

    ADS  Google Scholar 

  • S.J. Mackwell, M.E. Zimmerman, D.L. Kohlstedt, High-temperature deformation of dry diabase with applications to tectonics on Venus. J. Geophys. Res. 103, 975–984 (1998)

    ADS  Google Scholar 

  • M. Manga, D. Weeraratne, S.J.S. Morris, Boundary-layer thickness and instabilities in Bénard convection of a liquid with a temperature-dependent viscosity. Phys. Fluids 13, 802–805 (2001)

    ADS  MATH  Google Scholar 

  • E. Marcq, J.-L. Bertaux, F. Montmessin, D. Belyaev, Variations of sulfur dioxide at the cloud top of Venus’s dynamic atmosphere. Nat. Geosci. 6, 25–28 (2013). https://doi.org/10.1038/ngeo1650

    ADS  Google Scholar 

  • B. Marty et al., Xenon isotopes in 67P/Churyumov–Gerasimenko show that comets contributed to Earth’s atmosphere. Science 356(6342), 1069–1072 (2017). https://doi.org/10.1126/science.aal3496

    ADS  Google Scholar 

  • E. Mazarico, L. Iess, F. de Marchi, J.C. Andrews-Hanna, S.E. Smrekar, Advancing Venus geophysics with the NF4 Venus Origins Explorer (VOX) gravity investigation, in 15th Meeting of the Venus Exploration Analysis Group (2017). Abstract. #8003

    Google Scholar 

  • G.E. McGill, Hotspot evolution and Venusian tectonic style. J. Geophys. Res. 99, 23,149–23,161 (1994)

    ADS  Google Scholar 

  • G.E. McGill, E.R. Stofan, S.E. Smrekar, Venus tectonics, in Planetary Tectonics, ed. by T.A. Watters, R.S. Schultz (Cambridge University Press, Cambridge, 2009), p. 585

    Google Scholar 

  • D. McKenzie et al., Features on Venus generated by plate boundary processes. J. Geophys. Res. 97, 13533–13544 (1992)

    ADS  Google Scholar 

  • W.B. McKinnon, K.J. Zhanle, B.D. Ivanov, J.H. Melosh, Cratering on Venus: models and observations, in Venus II, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (Arizona Univ. Press, Tucson, 1997), pp. 969–1014

    Google Scholar 

  • G.J. Montesi, Fabric development as the key for forming ductile shear zones and enabling plate tectonics. J. Struct. Geol. 50, 254–266 (2013)

    ADS  Google Scholar 

  • J. Monteux, N. Coltice, F. Dubuffet, Y. Ricard, Thermo-mechanical adjustment after impacts during planetary growth. Geophys. Res. Lett. 34, 24201 (2007). https://doi.org/10.1029/2007GL031635

    ADS  Google Scholar 

  • W.B. Moore, A.A.G. Webb, Heat-pipe Earth. Nature 501, 501–505 (2013)

    ADS  Google Scholar 

  • W.B. Moore, J.I. Simon, A. Alexander, G. Webb, Heat-pipe planets. Earth Planet. Sci. Lett. 474, 13–19 (2017)

    ADS  Google Scholar 

  • L.N. Moresi, V.S. Solomatov, Numerical investigation of 2D convection with extremely large viscosity variations. Phys. Fluids 7(9), 2154–2162 (1995)

    ADS  MATH  Google Scholar 

  • L. Moresi, V. Solomatov, Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus. Geophys. J. Int. 133(3), 669–682 (1998)

    ADS  Google Scholar 

  • N. Mueller, J. Helbert, G.L. Hashimoto, C.C.C. Tsang, S. Erard, G. Piccolini, P. Drossart, Venus surface thermal emission at 1 mm in VIRTIS imaging observations: evidence for variation of crust and mantle differentiation conditions. J. Geophys. Res. 113, E00B17 (2008). https://doi.org/10.1029/2008JE003118

    Google Scholar 

  • N. Mueller, J. Helbert, S. Erard, G. Piccioni, D. Drossart, Rotation period of Venus estimated from Venus Express VIRTIS images and Magellan altimetry. Icarus 217, 474–483 (2012). https://doi.org/10.1016/j.icarus.2011.09.026

    ADS  Google Scholar 

  • T. Nakagawa, P.J. Tackley, Influence of magmatism on mantle cooling, surface heat flow and Urey ratio. Earth Planet. Sci. Lett. 329–330, 1–10 (2012)

    Google Scholar 

  • H.C. Nataf, F.M. Richter, Convection experiments in fluids with highly temperature-dependent viscosity and the thermal evolution of the planets. Phys. Earth Planet. Inter. 29, 320–329 (1982)

    ADS  Google Scholar 

  • F. Nimmo, D. Stevenson, Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. J. Geophys. Res. 105, 11,969–11,979 (2000)

    ADS  Google Scholar 

  • L. Noack, D. Breuer, T. Spohn, Coupling the atmosphere with interior dynamics: implications for the resurfacing of Venus. Icarus 217, 484–498 (2012)

    ADS  Google Scholar 

  • M. Ogawa, Numerical models of magmatism in convecting mantle with temperature-dependent viscosity and their implications for Venus and Earth. J. Geophys. Res. 105(E3), 6997–7012 (2000)

    ADS  Google Scholar 

  • M. Ogawa, T. Yanagisawa, Mantle evolution in Venus due to magmatism and phase transitions: from punctuated layered convection to whole-mantle convection. J. Geophys. Res., Planets 119, 867–883 (2014)

    ADS  Google Scholar 

  • M. Ogawa, G. Schubert, A. Zebib, Numerical simulations of three-dimensional thermal convection in a fluid with strongly temperature-dependent viscosity. J. Fluid Mech. 233, 299–328 (1991)

    ADS  MATH  Google Scholar 

  • K. Ohta, Y. Kuwayama, K. Hirose, K. Shimizu, Y. Ohishi, Experimental determination of the electrical resistivity of iron at Earth’s core conditions. Nature 534, 95–98 (2016)

    ADS  Google Scholar 

  • C. O’Neill, S. Marchi, S. Zhang, W. Bottke, Impact-driven subduction on the Hadean Earth. Nat. Geosci. 10, 793–797 (2017)

    ADS  Google Scholar 

  • T.C. O’Reilly, G.F. Davies, Magma transport of heat on Io: a mechanism allowing a thick lithosphere. Geophys. Res. Lett. 8, 313–316 (1981)

    ADS  Google Scholar 

  • J.G. O’Rourke, J. Korenaga, Thermal evolution of Venus with argon degassing. Icarus 260, 128–140 (2014)

    Google Scholar 

  • J.G. O’Rourke, S.E. Smrekar, Signatures of lithospheric flexure and elevated heat flow in stereo topography at coronae on Venus. J. Geophys. Res. (2018). https://doi.org/10.1002/2017JE005358

    Google Scholar 

  • J.G. O’Rourke, A.S. Wolf, B.L. Ehlmann, Venus: interpreting the spatial distribution of volcanically modified craters. Geophys. Res. Lett. 41, 8252–8260 (2014)

    ADS  Google Scholar 

  • C.P. Orth, V.S. Solomatov, The isostatic stagnant lid approximation and global variations in the Venusian lithospheric thickness. Geochem. Geophys. Geosyst. 12, Q07018 (2011). https://doi.org/10.1029/2011GC003582

    ADS  Google Scholar 

  • M. Palot, S.D. Jacobsen, J.P. Townsend, F. Nestola, K. Marquardt, N. Miyajima, J.W. Harris, T. Stachel, C.A. McCammon, D.G. Pearson, Evidence for H2O-bearing fluids in the lower mantle from diamond inclusion. Lithos 265, 237–243 (2016). https://doi.org/10.1016/j.lithos.2016.06.023

    ADS  Google Scholar 

  • M. Panning, E. Beucler, M. Drilleau, A. Moquet, P. Lognonné, B. Banerdt, Verifying single station seismic approaches using Earth-based data. Preparation for data return from the InSight mission to Mars. Icarus 248, 230–242 (2015)

    ADS  Google Scholar 

  • A.M. Papuc, G.F. Davies, Transient mantle layering and the episodic behavior of Venus due to the ‘basalt barrier’ mechanism. Icarus 217(2), 499–509 (2012)

    ADS  Google Scholar 

  • E.M. Parmentier, P.C. Hess, Chemical differentiation of a convecting planetary interior: consequences for a one plate planet such as Venus. Geophys. Res. Lett. 19, 2015–2018 (1992)

    ADS  Google Scholar 

  • M. Pauer, K. Fleming, O. Cǎdek, Modeling the dynamic component of the geoid and topography of Venus. J. Geophys. Res. 111, E11012 (2006). https://doi.org/10.1029/2005JE002511

    ADS  Google Scholar 

  • G.H. Pettengill, P.G. Ford, R.J. Wilt, Venus surface radiothermal emission. J. Geophys. Res. 97, 13,091–13,102 (1992)

    ADS  Google Scholar 

  • R.J. Phillips, V.L. Hansen, Tectonic and magmatic evolution of Venus. Annu. Rev. Earth Planet. Sci. 22, 597 (1994)

    ADS  Google Scholar 

  • R.J. Phillips, N.R. Izenberg, Ejecta correlations with spatial crater density and Venus resurfacing history. Geophys. Res. Lett. 22, 1517–1520 (1995)

    ADS  Google Scholar 

  • R.J. Phillips, M.C. Malin, The interior of Venus and tectonic implications, in Venus, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (Univ. of Arizona Press, Tucson, 1983), pp. 159–214

    Google Scholar 

  • J.L. Phillips, C.T. Russell, Upper limit on the intrinsic magnetic field of Venus. J. Geophys. Res. 92, 2253–2263 (1987)

    ADS  Google Scholar 

  • R.J. Phillips, R.F. Raubertas, R.E. Arvidson, I.C. Sarkar, R.R. Herrick, N. Izenberg, R.E. Grimm, Impact craters and Venus resurfacing history. J. Geophys. Res. 97, 15,923–15,948 (1992)

    ADS  Google Scholar 

  • D. Piskorz, L.T. Elkins-Tanton, S.E. Smrekar, Coronae formation on Venus via extension and lithospheric instability. J. Geophys. Res., Planets 119, 2568–2582 (2014). https://doi.org/10.1002/2014JE004636

    ADS  Google Scholar 

  • J.T. Ratcliff, G. Schubert, A. Zebib, Three-dimensional variable viscosity convection of an infinite Prandtl number Boussinesq fluid in a spherical shell. Geophys. Res. Lett. 22(16), 2227–2230 (1996)

    ADS  Google Scholar 

  • J.T. Ratcliff, P.J. Tackley, G. Schubert, A. Zebib, Transitions in thermal convection with strongly variable viscosity. Phys. Earth Planet. Inter. 102, 201–212 (1997)

    ADS  Google Scholar 

  • S.N. Raymond et al., Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus 226, 671–681 (2013)

    ADS  Google Scholar 

  • C.C. Reese, V.S. Solomatov, Fluid dynamics of local Martian magma oceans. Icarus (USA) 184(1), 102–120 (2006)

    ADS  Google Scholar 

  • C.C. Reese, V.S. Solomatov, L.-N. Moresi, Heat transport efficiency for stagnant lid convection with dislocation viscosity: application to Mars and Venus. J. Geophys. Res. 103(E6), 13,643–13,657 (1998)

    ADS  Google Scholar 

  • F.M. Richter, H.-C. Nataf, S.F. Daly, Heat transfer and horizontally averaged temperature of convection with large viscosity variations. J. Fluid Mech. 129, 173–192 (1983)

    ADS  Google Scholar 

  • A.E. Ringwood, Phase-transformations and their bearing on the constitution and dynamics of the mantle. Geochim. Cosmochim. Acta 55(8), 2083–2110 (1991)

    ADS  Google Scholar 

  • J.H. Roberts, S. Zhong, Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy. J. Geophys. Res. 111, E06013 (2006). https://doi.org/10.1029/2005JE002668

    ADS  Google Scholar 

  • I. Romeo, D.L. Turcotte, Resurfacing on Venus. Planet. Space Sci. 58(10), 1374–1380 (2010)

    ADS  Google Scholar 

  • A. Rozel, Impact of grain size on the convection of terrestrial planets. Geochem. Geophys. Geosyst. (2012). https://doi.org/10.1029/2012GC004282

    Google Scholar 

  • A. Salvador, H. Massol, A. Davaille, E. Marcq, P. Sarda, E. Chassefière, The relative influence of H2O and CO2 on the primitive surface conditions and evolution of rocky planets. J. Geophys. Res., Planets 122(7), 1458–1486 (2017)

    ADS  Google Scholar 

  • D.T. Sandwell, G. Schubert, Evidence for retrograde lithospheric subduction on Venus. Science 257, 766–770 (1992a)

    ADS  Google Scholar 

  • D.T. Sandwell, G. Schubert, Flexural ridges, trenches, and outer rises around coronae on Venus. J. Geophys. Res. 97(E10), 16,069–16,083 (1992b)

    ADS  Google Scholar 

  • D.T. Sandwell, C.L. Johnson, F. Bilotti et al., Driving forces for limited tectonics on Venus. Icarus 129, 232–244 (1997)

    ADS  Google Scholar 

  • N. Schaeffer, M. Manga, Interaction of rising and sinking mantle plumes. Geophys. Res. Lett. 21, 765–768 (2001)

    Google Scholar 

  • G. Schubert, D.T. Sandwell, A global survey of possible subduction sites on Venus. Icarus 117, 173–196 (1995)

    ADS  Google Scholar 

  • G. Schubert, K.M. Soderlund, Planetary magnetic fields: observations and models. Phys. Earth Planet. Inter. 187, 92–108 (2011)

    ADS  Google Scholar 

  • E.V. Shalygin, A.T. Basilevsky, W.J. Markiewicz, D.V. Titov, M.A. Kreslavsky, Th. Roatsch, Search for ongoing volcanic activity on Venus: case study of Maat Mons, Sapas Mons and Ozza Mons volcanoes. Planet. Space Sci. 73, 294–301 (2012). https://doi.org/10.1016/j.pss.2012.08.018

    ADS  Google Scholar 

  • D. Sifre, E. Gardes, M. Massuyeau, L. Hashim, S. Hier-Majurnder, F. Gaillard, Electrical conductivity during incipient melting in the oceanic low-velocity zone. Nature 509, 81–85 (2014). https://doi.org/10.1038/nature13245

    ADS  Google Scholar 

  • M. Simons, S.C. Solomon, B.H. Hager, Localization of gravity and topography: constraints on the tectonics and mantle dynamics of Venus. Geophys. J. Int. 131, 24–44 (1997)

    ADS  Google Scholar 

  • S.E. Smrekar, E.M. Parmentier, Interactions of mantle plumes with thermal and chemical boundary layers: application to hotspots on Venus. J. Geophys. Res. 101, 5397–5410 (1996)

    ADS  Google Scholar 

  • S. Smrekar, R.J. Phillips, Venusian highlands: geoid to topography ratios and their implications. Earth Planet. Sci. Lett. 107, 582–597 (1991)

    ADS  Google Scholar 

  • S.E. Smrekar, C. Sotin, Constraints on mantle plumes on Venus: implications for volatile history. Icarus 217, 510–523 (2012)

    ADS  Google Scholar 

  • S.E. Smrekar, E.R. Stofan, Coupled upwelling and delamination: a new mechanism for coronae formation and heat loss on Venus. Science 277, 1289–1294 (1997)

    ADS  Google Scholar 

  • S.E. Smrekar, E.R. Stofan, Origin of corona-dominated topographic rises on Venus. Icarus 139, 100–116 (1999)

    ADS  Google Scholar 

  • S.E. Smrekar, E.R. Stofan, N. Mueller, A. Treiman, L. Elkins-Tanton, J. Helbert, G. Piccioni, P. Drossart, Recent Hotspot Volcanism on Venus from VIRTIS emissivity data. Science 328, 605–608 (2010)

    ADS  Google Scholar 

  • S. Smrekar, S. Hensley, M.S. Wallace, M.E. Lisano, M.R. Durrach, C. Sotin, D. Lehman, Venus Origins Explorer (VOX) Concept: A proposed New Frontiers Mission, Instit. Electrical and Electronics Engineers (IEEE) Aereospace Conf., pp. 1–19 (2018)

  • V.S. Solomatov, Scaling of temperature- and stress-dependent viscosity convection. Phys. Fluids 7, 266–274 (1995)

    ADS  MATH  Google Scholar 

  • V.S. Solomatov, L.N. Moresi, Stagnant lid convection on Venus. J. Geophys. Res. 101, 4737–4753 (1996)

    ADS  Google Scholar 

  • S.C. Solomon, S.E. Smrekar, D.L. Bindschadler, R.E. Grimm, W.M. Kaula, G.E. McGill, R.J. Phillips, R.S. Saunders, G. Schubert, S.W. Squyres, E.R. Stofan, Venus tectonics: an overview of Magellan observations. J. Geophys. Res. 97, 13,199–13,256 (1992)

    ADS  Google Scholar 

  • C. Sotin, S. Labrosse, Three-dimensional thermal convection in an iso-viscous, infinite Prandtl number fluid heated from within and from below: applications to the transfer of heat through planetary mantles. Phys. Earth Planet. Inter. 112(3–4), 171–190 (1999)

    ADS  Google Scholar 

  • T. Spohn, Mantle differentiation and thermal evolution of Mars, Mercury, and Venus. Icarus 90(2), 222–236 (1991)

    ADS  Google Scholar 

  • C. Stein, J. Schmalzl, U. Hansen, The effect of rheological parameters on plate behavior in a self-consistent model of mantle convection. Phys. Earth Planet. Inter. 142, 225–255 (2004)

    ADS  Google Scholar 

  • C. Stein, A. Fahl, U. Hansen, Resurfacing events on Venus: implications on plume dynamics and surface topography. Geophys. Res. Lett. 37, L01201 (2010)

    ADS  Google Scholar 

  • V. Steinbach, D.A. Yuen, The effects of multiple phase-transitions on Venusian mantle convection. Geophys. Res. Lett. 19(22), 2243–2246 (1992)

    ADS  Google Scholar 

  • B. Steinberger, S.C. Werner, T.H. Torsvik, Deep versus shallow origin of gravity anomalies, topography and volcanism on Earth, Venus and Mars. Icarus 207(2), 564–577 (2010). https://doi.org/10.1016/j.icarus.2009.12.025

    ADS  Google Scholar 

  • K.C. Stengel, D.S. Oliver, J.R. Booker, Onset of convection in a variable-viscosity fluid. J. Fluid Mech. 120, 411–431 (1982)

    ADS  MATH  Google Scholar 

  • D.J. Stevenson, Planetary magnetic fields. Earth Planet. Sci. Lett. 208, 1–11 (2003)

    ADS  Google Scholar 

  • D.J. Stevenson, S.C. McNamara, Background heat flow on hotspot planets: Io and Venus. Geophys. Res. Lett. 15(13), 1455–1458 (1988)

    ADS  Google Scholar 

  • D.J. Stevenson, T. Spohn, G. Schubert, Magnetism and thermal evolution of the terrestrial planets. Icarus 54, 466–489 (1983)

    ADS  Google Scholar 

  • E.R. Stofan, S.E. Smrekar, Large topographic rises, coronae, large flow fields and large volcanoes on Venus: evidence for mantle plumes? in Plates, Plumes, and Paradigms, ed. by G.R. Foulger, J.H. Natland, D.C. Presnall, D.L. Anderson. Geol. Soc. Am. Special, vol. 388 (2005), p. 861

    Google Scholar 

  • E.R. Stofan, D.L. Bindschadler, J.W. Head, E.M. Parmentier, Corona structures on Venus: models of origin. J. Geophys. Res. 96, 20,933–20,946 (1991)

    ADS  Google Scholar 

  • R. Strom, G. Schaber, D. Dawson, The global resurfacing of Venus. J. Geophys. Res. 99, 10,899–10,926 (1994). https://doi.org/10.1029/94JE00388

    ADS  Google Scholar 

  • H. Svedhem et al., Venus Express—the first European mission to Venus. Planet. Space Sci. 55, 1636–1652 (2007)

    ADS  Google Scholar 

  • P.J. Tackley, On the ability of phase transitions and viscosity layering to induce long-wavelength heterogeneity in the mantle. Geophys. Res. Lett. 23, 1985–1988 (1996)

    ADS  Google Scholar 

  • P.J. Tackley, Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations 1. Pseudoplastic yielding. Geochem. Geophys. Geosyst. 1 (2000). https://doi.org/10.1029/2000GC000036

  • P.J. Tackley, D.J. Stevenson, G.A. Glatzmaier, G. Schubert, Effects of multiple phase transitions in a 3-dimensional spherical model of convection in Earth’s mantle. J. Geophys. Res. 99, 15887–15901 (1994)

    ADS  Google Scholar 

  • M. Thielmann, A. Rozel, B.J.P. Kaus, Y. Ricard, Intermediate-depth earthquake generation and shear zone formation caused by grain size reduction and shear heating. Geology 43(9), 791–794 (2015)

    ADS  Google Scholar 

  • R. Trompert, U. Hansen, Mantle convection simulations with rheologies that generate plate-like behavior. Nature 395(6703), 686–689 (1998)

    ADS  Google Scholar 

  • D.L. Turcotte, A heat pipe mechanism for volcanism and tectonics on Venus. J. Geophys. Res. B, Solid Earth Planets 94(B3), 2779–2785 (1989)

    Google Scholar 

  • D.L. Turcotte, An episodic hypothesis for Venusian tectonics. J. Geophys. Res. 98(E9), 17,061–17,068 (1993)

    ADS  Google Scholar 

  • D.L. Turcotte, How does Venus lose heat? J. Geophys. Res. 100, 16931–16940 (1995)

    ADS  Google Scholar 

  • K. Ueda, T. Gerya, S.V. Sobolev, Subduction initiation by thermal–chemical plumes: numerical studies. Phys. Earth Planet. Inter. 171(1–4), 296–312 (2008)

    ADS  Google Scholar 

  • P. Van Thienen, N. Vlaar, A. Van den Berg, Assessment of the cooling capacity of plate tectonics and flood volcanism in the evolution of Earth, Mars and Venus. Phys. Earth Planet. Inter. 150(4), 287–315 (2005)

    ADS  Google Scholar 

  • M.J. Way, A.D. Del Genio, N.Y. Kiang, L.E. Sohl, D.H. Grinspoon, I. Aleinov, M. Kelley, T. Clune, Was Venus the first habitable world of our solar system? Geophys. Res. Lett. 43(16), 8376–8383 (2016)

    ADS  Google Scholar 

  • D. Weeraratne, M. Manga, Transitions in the style of mantle convection at high Rayleigh numbers. Earth Planet. Sci. Lett. 160, 563–568 (1998)

    ADS  Google Scholar 

  • S.A. Weinstein, The potential role of non-Newtonian rheology in the resurfacing of Venus. Geophys. Res. Lett. 23(5), 511–514 (1996)

    ADS  Google Scholar 

  • S.A. Weinstein, U.R. Christensen, Convection planforms in a fluid with a temperature-dependent viscosity beneath a stress-free upper boundary. Geophys. Res. Lett. 18, 2035–2038 (1991)

    ADS  Google Scholar 

  • M.B. Weller, A. Lenardic, On the evolution of terrestrial planets: bi-stability, stochastic effects, and the non-uniqueness of tectonic states. Geosci. Front. 9, 91–102 (2017). https://doi.org/10.1016/j.gsf.2017.03.001

    Google Scholar 

  • M.B. Weller, A. Lenardic, C. O’Neill, The effects of internal heating and large scale climate variations on tectonic bi-stability in terrestrial planets. Earth Planet. Sci. Lett. 420, 85–94 (2015)

    ADS  Google Scholar 

  • D.B. White, The planforms and onset of convection with a temperature-dependent viscosity fluid. J. Fluid Mech. 191, 247–286 (1988)

    ADS  Google Scholar 

  • J.A. Whitehead Jr., D.S. Luther, Dynamics of laboratory diapir and plume models. J. Geophys. Res. 80, 705–717 (1975)

    ADS  Google Scholar 

  • A. Yang, H.H. Weng, J.S. Huang, Numerical studies of the effects of phase transitions on Venusian mantle convection. Sci. China Earth Sci. 58, 1883–1894 (2015). https://doi.org/10.1016/j.pss.2016.06.001

    Google Scholar 

  • A. Yang, J. Huang, D. Wei, Separation of dynamic and isostatic components of the Venusian gravity and topography and determination of the crustal thickness of Venus. Planet. Space Sci. 129, 24–31 (2016)

    ADS  Google Scholar 

  • M. Yoshida, M. Ogawa, The role of hot uprising plumes in the initiation of plate-like regime of three-dimensional mantle convection. Geophys. Res. Lett. 31, L05607 (2004)

    ADS  Google Scholar 

  • S. Zhong, M.T. Zuber, Degree-1 mantle convection and the crustal dichotomy on Mars. Earth Planet. Sci. Lett. 189, 75–84 (2001)

    ADS  Google Scholar 

  • S. Zhong, A. McNamara, E. Tan, L. Moresi, M. Gurnis, A benchmark study on mantle convection in a 3-D spherical shell using CitcomS. Geochem. Geophys. Geosyst. 9 (2008). https://doi.org/10.1029/2008GC002048

  • J.R. Zimbelman, Image resolution and evaluation of genetic hypotheses for planetary landscapes. Geomorphology 37, 179–199 (2001)

    ADS  Google Scholar 

  • M.T. Zuber, E.M. Parmentier, Formation of fold and thrust belts on Venus by thick-skinned deformation. Nature 377, 704–707 (1995)

    ADS  Google Scholar 

Download references

Acknowledgements

The manuscript was improved thanks to the detailed and constructive comments of Paul Tackley and Gerald Schubert. A portion of the work was supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. A.D was supported by the French Programme de Planétologie of CNRS-INSU/CNES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne E. Smrekar.

Additional information

Venus III

Edited by Bruno Bézard, Christopher T. Russell, Takehiko Satoh, Suzanne E. Smrekar and Colin F. Wilson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smrekar, S.E., Davaille, A. & Sotin, C. Venus Interior Structure and Dynamics. Space Sci Rev 214, 88 (2018). https://doi.org/10.1007/s11214-018-0518-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-018-0518-1

Keywords

Navigation