Skip to main content
Log in

Survey of Capabilities and Applications of Accurate Clocks: Directions for Planetary Science

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

For planetary science, accurate clocks are mainly used as part of an onboard radioscience transponder. In the case of two-way radio data, the dominating data type for planetary radioscience, an accurate spacecraft clock is not necessary since the measurements can be calibrated using high-precision clocks on Earth. In the case of one-way radio data, however, an accurate clock can make the precision of one-way radio data be comparable to the two-way data, and possibly better since only one leg of radio path would be affected by the media. This article addresses several ways to improve observations for planetary science, either by improving the onboard clock or by using further variants of the classical radioscience methods, e.g., Same Beam Interferometry (SBI). For a clock to be useful for planetary science, we conclude that it must have at least a short-time stability (\(<1{,}000~\mbox{s}\)) better than \(10^{-13}\) and its size be substantially miniaturized. A special case of using laser ranging to the Moon and the implication of having an accurate clock is shown as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • J.B. Abshire, X. Sun, G. Neumann, J. McGarry, T. Zagwodzki, P. Jester, H. Riris, M. Zuber, D.E. Smith, Laser pulses from Earth detected at Mars, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, Washington, 2006), paper CThT6

    Google Scholar 

  • S.W. Asmar, J.W. Armstrong, L. Iess, P. Tortora, Spacecraft Doppler tracking: noise budget and achievable accuracy in precision radio science observations. Radio Sci. 40, RS2001 (2005). doi:10.1029/2004RS003101

    Article  ADS  Google Scholar 

  • R.-M. Baland, G. Tobie, A. Lefevre, T. Van Hoolst, Titan’s internal structure inferred from its gravity field, shape, and rotation state. Icarus 237, 29–41 (2014). doi:10.1016/j.icarus.2014.04.007

    Article  ADS  Google Scholar 

  • S. Bauer, H. Hussmann, J. Oberst, D. Dirkx, D. Mao, G.A. Neumann, E. Mazarico, M.H. Torrence, J.F. McGarry, D.E. Smith, M.T. Zuber, Demonstration of orbit determination for the Lunar Reconnaissance Orbiter using one-way laser ranging data. Planet. Space Sci. 129, 32–46 (2016). doi:10.1016/j.pss.2016.06.005

    Article  ADS  Google Scholar 

  • S. Bauer, H. Hussmann, J. Oberst, D. Dirkx, D. Mao, G.A. Neumann, E. Mazarico, M.H. Torrence, J.F. McGarry, D.E. Smith, M.T. Zuber, Analysis of one-way laser ranging data to LRO, time transfer and clock characterization. Icarus 283, 38–54 (2017). doi:10.1016/j.icarus.2016.09.026

    Article  ADS  Google Scholar 

  • P. Bender, Proposed microwave transponders for early lunar robotic landers. Adv. Space Res. 14(6), 233–242 (1994). doi:10.1016/0273-1177(94)90033-7

    Article  ADS  Google Scholar 

  • D.M. Boroson, B.S. Robinson, D.V. Murphy et al., Overview and results of the lunar laser communication demonstration. Proc. SPIE 8971, 1–11 (2014)

    Google Scholar 

  • D. Buccino, J.A. Seubert, S.W. Asmar, R.S. Park, Optical ranging measurement with a lunar orbiter: limitations and potential. J. Spacecr. Rockets 53(3), 457–463 (2016). doi:10.2514/1.A33415

    Article  ADS  Google Scholar 

  • J.J. Degnan, Millimeter accuracy satellite laser ranging: a review, in Contributions of Space Geodesy to Geodynamics: Technology. Monograph Geodynamics Series (AGU, Washington, 1993), pp. 133–162

    Chapter  Google Scholar 

  • J.M. Degnan, Asynchronous laser transponders for precise interplanetary ranging and time transfer. J. Geodyn. 34, 551–594 (2002)

    Article  Google Scholar 

  • V. Dehant, W. Folkner, E. Renotte, D. Orban, S. Asmar, G. Balmino, J.P. Barriot, J. Benoist, R. Biancale, J. Biele, F. Budnik, S. Burger, O. de Viron, B. Häusler, Ö. Karatekin, S. Le Maistre, P. Lognonné, M. Menvielle, M. Mitrovic, M. Pätzold, A. Rivoldini, P. Rosenblatt, G. Schubert, T. Spohn, P. Tortora, T. Van Hoolst, O. Witasse, M. Yseboodt, Lander radioscience for obtaining the rotation and orientation of Mars. Planet. Space Sci. 57, 1050–1067 (2009). doi:10.1016/j.pss.2008.08.009

    Article  ADS  Google Scholar 

  • V. Dehant, S. Le Maistre, A. Rivoldini, M. Yseboodt, P. Rosenblatt, T. Van Hoolst, M. Mitrovic, Ö. Karatekin, J.C. Marty, A. Chicarro, Revealing Mars’ deep interior: future geodesy missions using radio links between landers, orbiters, and the Earth. Planet. Space Sci. 57, 1069–1081 (2010). doi:10.1016/j.pss.2010.03.014

    Google Scholar 

  • V. Dehant, B. Banerdt, P. Lognonné, M. Grott, S. Asmar, J. Biele, D. Breuer, F. Forget, R. Jaumann, C. Johnson, M. Knapmeyer, M. Lefeuvre, D. Mimoun, A. Mocquet, P. Read, A. Rivoldini, O. Romberg, G. Schubert, S. Smrekar, T. Spohn, P. Tortora, S. Ulamec, S. Vennerstrøm, Future Mars geophysical observatories for understanding its internal structure, rotation, and evolution. Planet. Space Sci. 68(1), 123–145 (2012a). doi:10.1016/j.pss.2011.10.016

    Article  ADS  Google Scholar 

  • V. Dehant, J. Oberst, R. Nadalini, U. Schreiber, N. Rambaux, Geodesy instrument package on the Moon for improving our knowledge of the Moon and the realization of reference frames. Planet. Space Sci. 68(1), 94–104 (2012b). doi:10.1016/j.pss.2012.02.008

    Article  ADS  Google Scholar 

  • D. Dirkx, R. Noomen, P.N.A.M. Visser, S. Bauer, L.L.A. Vermeersen, Comparative analysis of one- and two-way planetary laser ranging concepts. Planet. Space Sci. 117, 159–176 (2015)

    Article  ADS  Google Scholar 

  • D. Dirkx, Interplanetary laser ranging—analysis for implementation in planetary science mission. PhD thesis, Delft University of Technology (2015)

  • D. Dirkx, R. Noomen, P.N.A.M. Visser, L.I. Gurvits, L.L.A. Vermeersen, Space-time dynamics estimation from space mission tracking data. Astron. Astrophys. 587, A156 (2016)

    Article  ADS  Google Scholar 

  • M. Efroimsky, Bodily tides near spin-orbit resonances. Celest. Mech. Dyn. Astron. 112(3), 283–330 (2012). doi:10.1007/s10569-011-9397-4

    Article  ADS  MathSciNet  Google Scholar 

  • R.C. Elphic, C. Russell, The Lunar Atmosphere and Dust Environment Explorer Mission (LADEE) (Springer, Cham, 2015)

    Book  Google Scholar 

  • M. Fermi, P. Bender, B. Bertotti, M. Chersich, M. Gregnanin, L. Iess, L. Simone, Investigation of the lunar interior with a microwave interferometer. 37th COSPAR Scientific Assembly, paper P162-TueWed B01-0062-08 (2008)

  • W.M. Folkner, C.F. Yoder, D.N. Yuan, E.M. Standish, R.A. Preston, Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. Science 278(5344), 1749 (1997)

    Article  ADS  Google Scholar 

  • M. Gregnanin, B. Bertotti, M. Chersich, M. Fermi, L. Iess, L. Simone, P. Tortora, J.G. Williams, Same beam interferometry as a tool for the investigation of the lunar interior. Planet. Space Sci. 74, 194–201 (2012). doi:10.1016/j.pss.2012.08.027

    Article  ADS  Google Scholar 

  • M. Gregnanin, M. Yseboodt, V. Dehant, L. Iess, T. Van Hoolst, Estimation of Mars geophysical information through Same Beam Interferometry, in Proc. European Planetary Science Congress EPSC 2014, Centro de Congressos do Estoril, Cascais, Portugal Austria, 7–12 September, 2014, vol. 9 (2014), EPSC2014-EPSC395

    Google Scholar 

  • H. Hemmati, K.M. Birnbaum, W.H. Farr, S. Turyshev, A. Biswas, Combined laser communications and laser ranging transponder for Moon and Mars, in Free-Space Laser Communication Technologies XXI. SPIE Conference Series, vol. 7199 (2009), No. 71990N

    Google Scholar 

  • L. Iess, M. Fermi, P. Bender, B. Bertotti, M. Gregnanin, L. Simon, A microwave interferometer for the investigation of the lunar interior. NASA NOI N9-ILN09-0016 for the International Lunar Network (2008)

  • L. Iess, M.D. Benedetto, N. James, M. Mercolino, L. Simone, P. Tortora, Astra: interdisciplinary study on enhancement of the end-to-end accuracy for spacecraft tracking techniques. Acta Astronaut. 94(2), 699–707 (2014)

    Article  ADS  Google Scholar 

  • A.S. Konopliv, C.F. Yoder, Venusian \(k_{2}\) tidal Love number from Magellan and PVO tracking data. Geophys. Res. Lett. 23(14), 1857–1860 (1996). doi:10.1029/96GL01589

    Article  ADS  Google Scholar 

  • A.S. Konopliv, S.W. Asmar, W.M. Folkner, Ö. Karatekin, D.C. Nunes, S.E. Smrekar, C.F. Yoder, M.T. Zuber, Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428 (2011). doi:10.1016/j.icarus.2010.10.004

    Article  ADS  Google Scholar 

  • P. Kuchynka, W.M. Folkner, A.S. Konopliv, R.S. Park, S. Le Maistre, V. Dehant, New constraints on Mars rotation determined from radiometric tracking of the Opportunity Mars Exploration Rover. Icarus 222(1), 243–253 (2013). doi:10.1016/j.icarus.2012.11.003

    Article  ADS  Google Scholar 

  • P. Kuchynka, W.M. Folkner, A.S. Konopliv, R.S. Park, S. Le Maistre, V. Dehant, New constraints on Mars rotation determined from radiometric tracking of the Opportunity Mars Exploration Rover. Icarus 229, 340–347 (2014). doi:10.1016/j.icarus.2013.11.015

    Article  ADS  Google Scholar 

  • S. Le Maistre, P. Rosenblatt, A. Rivoldini, V. Dehant, J.C. Marty, Ö. Karatekin, Lander Radio science experiment with a direct link between Mars and the Earth. Planet. Space Sci. 68(1), 105–122 (2012). doi:10.1016/j.pss.2011.12.020

    Article  ADS  Google Scholar 

  • D. Mao, J. McGarry, M. Torrence, G. Neumann, E. Mazarico, M. Barker, X. Sun, D. Rowlands, J. Golder, T. Zagwodzki, J. Cavanaugh, M. Zuber, D. Smith, Laser ranging experiment on Lunar Reconnaissance Orbiter: timing determination and orbit constraints, in Proceedings of ILRS Workshop, Bad Kotzing, Germany, May 2012 (2012). http://cddis.gsfc.nasa.gov/lw17/docs/papers/session13/02-Mao_LRO-LR_Kotzting2011_paper_final.pdf

    Google Scholar 

  • D. Mao, J.F. McGarry, E. Mazarico, G.A. Neumann, X. Sun, M.H. Torrence, T.W. Zagwodzki, D.D. Rowlands, E.D. Hoffman, J.E. Horvath, J.E. Golder, M.K. Barker, D.E. Smith, M.T. Zuber, The laser ranging experiment of the Lunar Reconnaissance Orbiter: five years of operations and data analysis. Icarus 283, 55–69 (2017). doi:10.1016/j.icarus.2016.07.003

    Article  ADS  Google Scholar 

  • E. Mazarico, F.G. Lemoine, S. Goossens, T.J. Sabaka, J.B. Nicholas, D.D. Rowlands, G.A. Neumann, M.H. Torrence, D.E. Smith, M.T. Zuber, Improved precision orbit determination of lunar orbiters from the GRAIL-derived lunar gravity models. Adv. Astronaut. Sci. 148, 1125–1141 (2013)

    Google Scholar 

  • G. Mitri, R. Meriggiola, A. Hayes, A. Lefevre, G. Tobie, A. Genova, J.I. Lunine, H. Zebkerg, Shape, topography, gravity anomalies and tidal deformation of Titan. Icarus 236, 169–177 (2014). doi:10.1016/j.icarus.2014.03.018

    Article  ADS  Google Scholar 

  • W.B. Moore, G. Schubert, The tidal response of Ganymede and Callisto with and without liquid water oceans. Icarus 166, 223–226 (2003). doi:10.1016/j.icarus.2003.07.001

    Article  ADS  Google Scholar 

  • T.D. Moyer, Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation. Monograph 2 Deep Space Communications and Navigation Series (2000). 549 pp.

    Google Scholar 

  • T.W. Murphy, E.G. Adelberger, J.B.R. Battat, L.N. Carey, C.D. Hoyle, P. Leblanc, E.L. Michelsen, K. Nordtvedt, A.E. Orin, J.D. Strasburg, C.W. Stubbs, H.E. Swanson, E. Williams, The Apache Point Observatory lunar laser-ranging operation: instrument description and first detections. Publ. Astron. Soc. Pac. 120, 20 (2008). doi:10.1086/526428

    Article  ADS  Google Scholar 

  • F. Nimmo, U.H. Faul, E.J. Garnero, Dissipation at tidal and seismic frequencies in a melt-free Moon. J. Geophys. Res. 117(E9), E09005 (2012). doi:10.1029/2012JE004160

    Article  ADS  Google Scholar 

  • J. Oberst, V. Lainey, C. Le Poncin-Latte, V. Dehant, P. Rosenblatt, S. Ulamec, J. Biele, J. Spurmann, R. Kahle, V. Klein, U. Schreiber, A. Schlicht, N. Rambaux, P. Laurent, B. Noyelles, B. Foulon, A. Zakharov, L. Gurvits, D. Uchaev, S. Murchie, C. Reed, S.G. Turyshev, J. Gil, M. Graziano, K. Willner, K. Wickhusen, A. Pasewaldt, M. Wahlisch, H. Hussmann, GETEMME—a mission to explore the Martian satellites and the fundamentals of solar system physics. Exp. Astron. 34, 243–271 (2012)

    Article  ADS  Google Scholar 

  • R.S. Park, A.S. Konopliv, S.W. Asmar, B.G. Bills, R.W. Gaskell, C.A. Raymond, D.E. Smith, M.T. Zuber, Gravity field expansion in ellipsoidal harmonic and polyhedral internal representations applied to Vesta. Icarus 240, 118–132 (2013)

    Article  ADS  Google Scholar 

  • R.S. Park, A.S. Konopliv, B.G. Bills, N. Rambaux, J.C. Castillo-Rogez, C.A. Raymond, A.T. Vaughan, A.I. Ermakov, M.T. Zuber, R.R. Fu, M.J. Toplis, C.T. Russell, A. Nathues, F. Preusker, A partially differentiated interior for Ceres deduced from its gravity field and shape. Nature 537, 515–517 (2016)

    Article  ADS  Google Scholar 

  • N. Rambaux, J.G. Williams, The Moon’s physical librations and determination of their free modes. Celest. Mech. Dyn. Astron. 109(1), 85–100 (2011). doi:10.1007/s10569-010-9314-2

    Article  ADS  MATH  Google Scholar 

  • D.E. Smith, M.T. Zuber, X. Sun, G.A. Neumann, J.F. McGarry, T.W. Zagwodzki, Two-way laser link over interplanetary distance. Science 311, 53 (2006)

    Article  ADS  Google Scholar 

  • S.G. Turyshev, W. Farr, W.M. Folkner, A.R. Girerd, H. Hemmati, T.W. Murphy, J.G. Williams, J.J. Degnan, Advancing tests of relativistic gravity via laser ranging to Phobos. Exp. Astron. 28(2), 209–249 (2010)

    Article  ADS  Google Scholar 

  • S.G. Turyshev, J.G. Williams, W.M. Folkner, G.M. Gutt, R.T. Baran, R.C. Hein, R.P. Somawardhana, J.A. Lipa, S. Wang, Corner-cube retro-reflector instrument for advanced lunar laser ranging. Exp. Astron. 36(1–2), 105–135 (2013). doi:10.1007/s10686-012-9324-z

    Article  ADS  Google Scholar 

  • J.M. Wahr, M.T. Zuber, D.E. Smith, J.I. Lunine, Tides on Europa, and the thickness of Europa’s icy shell. J. Geophys. Res. 111(E12), E12005 (2006). doi:10.1029/2006JE002729

    Article  ADS  Google Scholar 

  • J.G. Williams, X.X. Newhall, J.O. Dickey, Relativity parameters determined from lunar laser ranging. Phys. Rev. D 53, 6730–6739 (1996)

    Article  ADS  Google Scholar 

  • J.G. Williams, S.G. Turyshev, T.W. Murphy, Improving LLR tests of gravitational theory. Int. J. Mod. Phys. D 13(3), 567–582 (2004). doi:10.1142/S0218271804004682

    Article  ADS  MATH  Google Scholar 

  • J.G. Williams, S.G. Turyshev, D.H. Boggs, Lunar laser ranging tests of the equivalence principle with the Earth and Moon. Int. J. Mod. Phys. D 18(07), 1129–1175 (2009). doi:10.1142/S021827180901500X

    Article  ADS  MATH  Google Scholar 

  • J.G. Williams, A.S. Konopliv, D.H. Boggs, R.S. Park, D.-N. Yuan, F.G. Lemoine, S. Goossens, E. Mazarico, F. Nimmo, R.C. Weber, S.W. Asmar, H.J. Melosh, G.A. Neumann, R.J. Phillips, D.E. Smith, S.C. Solomon, M.M. Watkins, M.A. Wieczorek, J.C. Andrews-Hanna, J.W. Head, W.S. Kiefer, I. Matsuyama, P.J. McGovern, G.J. Taylor, M.T. Zuber, Lunar interior properties from the GRAIL mission. J. Geophys. Res. 119(7), 1546–1578 (2014). doi:10.1002/2013JE004559

    Article  Google Scholar 

  • J.G. Williams, D.H. Boggs, Tides on the Moon: theory and determination of dissipation. J. Geophys. Res. 120(4), 689–724 (2015). doi:10.1002/2014JE004755

    Article  Google Scholar 

  • X. Wu, Y.E. Bar-Sever, W.M. Folkner, J.G. Williams, J.F. Zumberge, Probing Europa’s hidden ocean from tidal effects on orbital dynamics. Geophys. Res. Lett. 28(11), 2245–2248 (2001). doi:10.1029/2000GL012814

    Article  ADS  Google Scholar 

  • S. Zhong, C. Qin, A. Geruo, J.M. Wahr, Can tidal tomography be used to unravel the long-wavelength structure of the lunar interior? Geophys. Res. Lett. 39(15), L15201 (2012). doi:10.1029/2012GL052362

    Article  ADS  Google Scholar 

  • M.T. Zuber, D.E. Smith, R.S. Zellar, G.A. Neumann, X. Sun, R.B. Katz, I. Kleyner, A. Matuszeski, J.F. McGarry, M.N. Ott, L.A. Ramos-Izquierdo, D.D. Rowlands, M.H. Torrence, T.W. Zagwodzki, The lunar reconnaissance orbiter laser ranging investigation. Space Sci. Rev. 150(1–4), 63–80 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Dehant.

Additional information

High Performance Clocks with Special Emphasis on Geodesy and Geophysics and Applications to Other Bodies of the Solar System

Edited by Rafael Rodrigo, Véronique Dehant, Leonid Gurvits, Michael Kramer, Ryan Park, Peter Wolf and John Zarnecki

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehant, V., Park, R., Dirkx, D. et al. Survey of Capabilities and Applications of Accurate Clocks: Directions for Planetary Science. Space Sci Rev 212, 1433–1451 (2017). https://doi.org/10.1007/s11214-017-0424-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0424-y

Keywords

Navigation