Skip to main content

Advertisement

Log in

Aeronomy of the Venus Upper Atmosphere

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We present aeronomical observations collected using remote sensing instruments on board Venus Express, complemented with ground-based observations and numerical modeling. They are mostly based on VIRTIS and SPICAV measurements of airglow obtained in the nadir mode and at the limb above 90 km. They complement our understanding of the behavior of Venus’ upper atmosphere that was largely based on Pioneer Venus observations mostly performed over thirty years earlier. Following a summary of recent spectral data from the EUV to the infrared, we examine how these observations have improved our knowledge of the composition, thermal structure, dynamics and transport of the Venus upper atmosphere. We then synthesize progress in three-dimensional modeling of the upper atmosphere which is largely based on global mapping and observations of time variations of the nitric oxide and O2 nightglow emissions. Processes controlling the escape flux of atoms to space are described. Results based on the VeRA radio propagation experiment are summarized and compared to ionospheric measurements collected during earlier space missions. Finally, we point out some unsolved and open questions generated by these recent datasets and model comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

Notes

  1. Other researchers call the lower and the main layer E and F1 layer, respectively, in order to compare with similar formations in the Earth ionosphere (e.g. Bauer et al. 1977; Banks and Kockarts 2013; Fox 2007). We adopt the notation of Rishbeth and Mendillo (2004) for the Mars ionosphere and call the layers V1 and V2 where “V” stands for Venus. This avoids confusion when comparing planetary ionospheres.

  2. The processing of radio occultation data yields the refractivity as a function of radius with respect to the center of planet. The altitude assignments are principally relative to the Venus geoid which is realized by the mean planetary radius of 6050.8 km because of the non-oblate, spherical shape of the planetary body.

References

  • M.J. Alexander, A mechanism for the Venus thermospheric superrotation. Geophys. Res. Lett. 19, 2207–2210 (1992)

    Article  ADS  Google Scholar 

  • M.J. Alexander, A.I.F. Stewart, S.C. Solomon, S.W. Bougher, Local time asymmetries in the Venus thermosphere. J. Geophys. Res. 98, 10849–10871 (1993)

    Article  ADS  Google Scholar 

  • F. Altieri, F. Migliorini, L. Zasova, A. Shakun, G. Piccioni, G. Bellucci, Modeling VIRTIS/VEX \(\mathrm{O}_{2}\) (\(\mathrm{a}^{1}\Delta _{\mathrm{g}}\)) nightglow profiles affected by the propagation of gravity waves in the Venus upper mesosphere. J. Geophys. Res., Planets 119, 2300–2316 (2014). doi:10.1002/2013JE004585

    Article  ADS  Google Scholar 

  • D.E. Anderson, The Mariner 5 ultraviolet photometer experiment: analysis of hydrogen Lyman alpha data. J. Geophys. Res. 81, 1213 (1976)

    Article  ADS  Google Scholar 

  • J. Bailey, S. Chamberlain, D. Crisp, V.S. Meadows, Near infrared imaging spectroscopy of Venus with the Anglo-Australian Telescope. Planet. Space Sci. 56, 1385–1390 (2008b)

    Article  ADS  Google Scholar 

  • J. Bailey, V.S. Meadows, S. Chamberlain, D. Crisp, The temperature of the Venus mesosphere from O2 (\(\mathrm{a}^{1}\Delta\)) airglow observations. Icarus 197, 247–259 (2008a)

    Article  ADS  Google Scholar 

  • P.M. Banks, G. Kockarts, Aeronomy (Elsevier, Amsterdam, 2013)

    Google Scholar 

  • S.J. Bauer, L.H. Brace, D.M. Hunten, D.S. Intriligator, W.C. Knudsen, A.F. Nagy, C.T. Russell, F.L. Scarf, J.H. Wolfe, The Venus ionosphere and solar wind interaction. Space Sci. Rev. 20, 413–430 (1977)

    Article  ADS  Google Scholar 

  • J.L. Bertaux, J.E. Blamont, V.M. Lepine, V.G. Kurt, N.N. Romanova, A.S. Smirnov, Venera 11 and Venera 12 observations of e.u.v. emissions from the upper atmosphere of Venus. Planet. Space Sci. 29, 149–166 (1981). doi:10.1016/0032-0633(81)90029-5

    Article  ADS  Google Scholar 

  • J.-L. Bertaux, D. Nevejans, O. Korablev, E. Villard, E. Quémerais, E. Neefs, F. Montmessin, F. Leblanc, J.P. Dubois, E. Dimarellis, A. Hauchecorne, F. Lefèvre, P. Rannou, J.Y. Chaufray, M. Cabane, G. Cernogora, G. Souchon, F. Semelin, A. Reberac, E. Van Ransbeek, S. Berkenbosch, R. Clairquin, C. Muller, F. Forget, F. Hourdin, O. Talagrand, A. Rodin, A. Fedorova, A. Stepanov, I. Vinogradov, A. Kiselev, Y. Kalinnikov, G. Durry, B. Sandel, A. Stern, J.C. Gérard, SPICAV on Venus Express: three spectrometers to study the global structure and composition of the Venus atmosphere. Planet. Space Sci. 55, 12 (2007)

    Article  Google Scholar 

  • A. Bhardwaj, S.K. Jain, Calculations of N2 triplet states vibrational populations and band emissions in Venusian dayglow. Icarus 217, 2752–2758 (2012). doi:10.1016/j.icarus.2011.05.026

    Article  Google Scholar 

  • A. Bhardwaj, S.K. Jain, CO Cameron band and \(\mathrm{CO}_{2} ^{+}\) UV doublet emissions in the dayglow of Venus: role of CO in the Cameron band production. J. Geophys. Res. 118, 3660–3671 (2013). doi:10.1002/jgra.50345

    Article  Google Scholar 

  • S.W. Bougher, W.J. Borucki, Venus O2 visible and IR nightglow: implications for lower thermosphere dynamics and chemistry. J. Geophys. Res. 99, 3759–3776 (1994)

    Article  ADS  Google Scholar 

  • S.W. Bougher, R.G. Roble, Comparative terrestrial planet thermospheres: 1. Solar cycle variation of global mean temperatures. J. Geophys. Res. 96, 11045–11055 (1991). doi:10.1029/91JA01162

    Article  ADS  Google Scholar 

  • S.W. Bougher, R.E. Dickinson, E.C. Ridley, R.G. Roble, A.F. Nagy, T. Cravens, Venus mesosphere and thermosphere II. Global circulation, temperature, and density variations. Icarus 68, 284–312 (1986)

    Article  ADS  Google Scholar 

  • S.W. Bougher, R.E. Dickinson, E.C. Ridley, R.G. Roble, Venus mesosphere and thermosphere III. Three-dimensional general circulation with coupled dynamics and composition. Icarus 73, 545–573 (1988)

    Article  ADS  Google Scholar 

  • S.W. Bougher, D.M. Hunten, R.J. Phillips, Venus II (University of Arizona Press, Tucson, 1989). ISBN 978-0-8165-1830-2

    Google Scholar 

  • S.W. Bougher, J.C. Gérard, A.I.F. Stewart, C.G. Fesen, The Venus nitric oxide night airglow: model calculations based on the Venus Thermospheric General Circulation Model. J. Geophys. Res. 95(A5), 6271–6284 (1990)

    Article  ADS  Google Scholar 

  • S.W. Bougher, M.J. Alexander, H.G. Mayr, Upper Atmosphere Dynamics: Global Circulation and Gravity Waves, Venus II, Ch. 2.4 (U. of Arizona Press, Tucson, 1997), pp. 259–292

    Google Scholar 

  • S.W. Bougher, S. Engel, R.G. Roble, B. Foster, Comparative terrestrial planet thermospheres: 2. Solar cycle variation of global structure and winds at equinox. J. Geophys. Res. 104, 16591–16611 (1999)

    Article  ADS  Google Scholar 

  • S.W. Bougher, S. Rafkin, P. Drossart, Dynamics of the Venus upper atmosphere: outstanding problems and new constraints expected from Venus Express. Planet. Space Sci. 54, 13–14 (2006). doi:10.1016/j.pss.2006.04.023

    Article  Google Scholar 

  • S.W. Bougher, C.D. Parkinson, A.S. Brecht, J.-L. Fischer, A.-C. Vandaele, V. Wilquet, A. Mahieux, in Temperatures in Venus’ Lower Thermosphere: Comparison of VTGCM and SOIR Profiles at the Terminator, SPICAM/SPICAV Team Meeting, Catania, Italy, 16–19 June (2013)

    Google Scholar 

  • S.W. Bougher, A.S. Brecht, R. Schulte, J.-L. Fischer, C.D. Parkinson, A. Mahieux, V. Wilquet, A.-C. Vandaele, Upper atmosphere temperature structure at the Venusian terminators: a comparison of SOIR and VTGCM results. Planet. Space Sci. (2015). doi:10.1016/j.pss.2015.01.012

    Google Scholar 

  • L.H. Brace, A.J. Kliore, The structure of the Venus ionosphere. Space Sci. Rev. 55, 81–163 (1991)

    Article  ADS  Google Scholar 

  • L.H. Brace, J.P. Krehbiel, A.F. Nagy, T.M. Donahue, M.B. McElroy, A. Pedersen, R.F. Theis, Electron temperatures and densities in the Venus ionosphere—Pioneer Venus orbiter electron temperature probe results. Science 203, 763–765 (1979)

    Article  ADS  Google Scholar 

  • L.H. Brace, H.A. Taylor Jr., T.I. Gombosi, A.J. Kliore, W.C. Knudsen, A.F. Nagy, The ionosphere of Venus – observations and their interpretation, in Venus, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (1983), pp. 779–840

    Google Scholar 

  • A.S. Brecht, S.W. Bougher, Dayside Thermal Structure of Venus’ Upper Atmosphere Characterized by a Global Model. J. Geophys. Res. 117 (2012). doi:10.1029/2012JE004079

  • A.S. Brecht, S.W. Bougher, J.-C. Gérard, C.D. Parkinson, S. Rafkin, B. Foster, Understanding the variability of nightside temperatures, NO UV and O2 IR nightglow emissions in the Venus upper atmosphere. J. Geophys. Res. 116, E8004 (2011). doi:10.1029/2010je003770

    Article  ADS  Google Scholar 

  • A.S. Brecht, S.W. Bougher, J.-C. Gérard, L. Soret, Atomic oxygen distributions in the Venus thermosphere: comparisons between Venus Express observations and global model simulations. Icarus 217, 759–766 (2012). doi:10.1016/j.icarus.2011.06.033

    Article  ADS  Google Scholar 

  • T.K. Breus, K.I. Gringauz, M.I. Verigin, On the properties and origin of the Venus ionosphere. Adv. Space Res. 5, 145–156 (1985)

    Article  Google Scholar 

  • H.C. Brinton, H.A. Taylor Jr., H.B. Niemann, H.G. Mayr, A.F. Nagy, T.E. Cravens, D.F. Strobel, Venus nighttime hydrogen bulge. Geophys. Res. Lett. 7, 865–868 (1980)

    Article  ADS  Google Scholar 

  • E. Chassefiere, J.L. Bertaux, V.G. Kurt, A.S. Smirnov, Venus e.u.v. measurements of helium at 58.4 nm from Venera 11 and Venera 12 and implications for the outgassing history. Planet. Space Sci. 34, 585–602 (1986). doi:10.1016/0032-0633(86)90037-1

    Article  ADS  Google Scholar 

  • J.Y. Chaufray, J.-L. Bertaux, F. Leblanc, First observation of the Venus UV dayglow at limb from SPICAV/VEX. Geophys. Res. Lett. 39, L20201. (2012a). doi:10.1029/2012GL053626

    Article  ADS  Google Scholar 

  • J.Y. Chaufray, J.-L. Bertaux, E. Quémerais, E. Villard, F. Leblanc, Hydrogen density in the dayside Venusian exosphere derived from Lyman-\(\alpha\) observations by SPICAV on Venus Express. Icarus 217, 767–778 (2012b)

    Article  ADS  Google Scholar 

  • R.T. Clancy, D.O. Muhleman, Diurnal CO variations in the Venus mesosphere from CO microwave spectra. Icarus 64(2), 157–182 (1985)

    Article  ADS  Google Scholar 

  • R.T. Clancy, D.O. Muhleman, Long-term (1979–1990) changes in the thermal, dynamical, and compositional structure of the Venus mesosphere as inferred from microwave spectral line observations of C-12O, C-13O, and CO-18. Icarus 89, 129–146 (1991)

    Article  ADS  Google Scholar 

  • R.T. Clancy, B.J. Sandor, G.H. Moriarty-Schieven, Observational definition of the Venus mesopause: vertical structure, diurnal variation, and temporal instability. Icarus 161, 1–16 (2003). doi:10.1016/S0019-1035(02)00022-2

    Article  ADS  Google Scholar 

  • R.T. Clancy, B.J. Sandor, G.H. Moriarty-Schieven, Venus upper atmospheric CO, temperature, and winds across the afternoon/evening terminator from June 2007 JCMT sub-millimeter line observations. Planet. Space Sci. 56, 1344–1354 (2008). doi:10.1016/j.pss/2008.05.007

    Article  ADS  Google Scholar 

  • R.T. Clancy, B.J. Sandor, A. García-Muñoz, F. Lefèvre, M.D. Smith, M.J. Wolff, F. Montmessin, S.L. Murchie, H. Nair, First detection of Mars atmospheric hydroxyl: CRISM near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere. Icarus 226, 272–281 (2013)

    Article  ADS  Google Scholar 

  • A. Collet, C. Cox, J.-C. Gérard, Two-dimensional time-dependent model of the transport of minor species in the Venus night side upper atmosphere. Planet. Space Sci. 58, 14–15 (2010). doi:10.1016/j.pss.2010.08.016

    Article  Google Scholar 

  • P. Connes, J.F. Noxon, W.A. Traub, N.P. Carleton, O2 (\(^{1} \Delta\)) emission in the day and night airglow of Venus. Astrophys. J. 233, L29–L32 (1979)

    Article  ADS  Google Scholar 

  • C. Cox, J.-C. Gérard, B. Hubert, J.L. Bertaux, S.W. Bougher, The Mars ultraviolet dayglow variability: SPICAM observations and comparison with airglow model. J. Geophys. Res. 115, E04010 (2010). doi:10.1029/2009JE003504

    ADS  Google Scholar 

  • T.E. Cravens, J.U. Kozyra, A.F. Nagy, A.J. Kliore, The ionospheric peak on the Venus dayside. J. Geophys. Res. 86, 11323–11329 (1981)

    Article  ADS  Google Scholar 

  • D. Crisp, V.S. Meadows, B. Bézard, C. deBergh, J.-P. Maillard, F.P. Mills, Ground-based near-infrared observations of the Venus nightside: 1.27-μm O2 (\(\mathrm{a}^{1}\Delta _{\mathrm{g}}\)) airglow from the upper atmosphere. J. Geophys. Res. 101, 4577–4594 (1996). doi:10.1029/95JE03136

    Article  ADS  Google Scholar 

  • J. Crovisier, E. Lellouch, C. deBergh, J.-P. Maillard, B.L. Lutz, B. Bézard, Carbon monoxide emissions at 4.7 μm from Venus atmosphere. Planet. Space Sci. 54, 1398–1414 (2006)

    Article  ADS  Google Scholar 

  • A.D. Del Genio, W.B. Rossow, Temporal variability of UV cloud features in the Venus stratosphere. Icarus 51, 391–415 (1982)

    Article  ADS  Google Scholar 

  • A.D. Del Genio, W.B. Rossow, Planetary-scale waves and the cyclic nature of cloud top dynamics on Venus. J. Atmos. Sci. 47, 293–318 (1990)

    Article  ADS  Google Scholar 

  • D. Deming et al., Observations of the 10-μm natural laser emission from the mesospheres of Mars and Venus. Icarus 55, 347–355 (1983)

    Article  ADS  Google Scholar 

  • R.E. Dickinson, Infrared radiative HeatingCooling in the Venusian mesosphere. I: Global mean radiative equilibrium. J. Atmos. Sci. 29, 1531–1556 (1972). doi:10.1175/1520-0469

    Article  ADS  Google Scholar 

  • T.M. Donahue, D.H. Grinspoon, R.E. Hartle, R.R. Hodgee, Ion/neutral escape of hydrogen deuterium: evolution of water, in Venus H – Geology, Geophysics, Atmosphere, Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Philips (Univ. of Ariz. Press, Tuscon, 1997), pp. 385–414

    Google Scholar 

  • P. Drossart et al., A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express. Nature 450, 7170 (2007). doi:10.1038/nature06140

    Article  Google Scholar 

  • P.D. Feldman, E.B. Burgh, S.T. Durrance, A.F. Davidsen, Far-ultraviolet spectroscopy of Venus and Mars at 4 Å resolution with the Hopkins ultraviolet telescope on Astro-2. Astrophys. J. 538, 395 (2000). doi:10.1086/309125

    Article  ADS  Google Scholar 

  • G. Fjeldbo, V.R. Eshleman, Atmosphere of Venus as studied with the Mariner 5 dual radio-frequency occultation experiment. Radio Sci. 4, 879–897 (1969)

    Article  ADS  Google Scholar 

  • G. Fjeldbo, B. Seidel, D. Sweetnam, H.T. Howard, The Mariner 10 radio occultation measurements of the ionosphere of Venus. J. Atmos. Sci. 32, 1232–1236 (1975)

    Article  ADS  Google Scholar 

  • J.M. Forbes, M.E. Hagan, Diurnal Kelvin wave in the atmosphere of mars: towards an understanding of ‘stationary’ density structures observed by the MGS accelerometer. Geophys. Res. Lett. 27, 3563–3566 (2000)

    Article  ADS  Google Scholar 

  • J.M. Forbes, A. Konopliv, Oscillation of Venus’ upper atmosphere. Geophys. Res. Lett. 34, L08202 (2007). doi:10.1029/2007GL029252

    Article  ADS  Google Scholar 

  • J.L. Fox, Airglow and Aurora in the atmospheres of Venus and Mars, in Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions, ed. by e.J.G. Luhmann, M. Tatrallyay, R.O. Pepin (American Geophysical Union, Washington, 1992). doi:10.1029/GM066p0191

    Google Scholar 

  • J.L. Fox, Near-terminator Venus ionosphere: how Chapman-esque? J. Geophys. Res. 112, E04S02 (2007). doi:10.1029/2006JE002736

    Article  ADS  Google Scholar 

  • J.L. Fox, The ionospheric source of the red and green lines of atomic oxygen in the Venus nightglow. Icarus 221, 787–799 (2012)

    Article  ADS  Google Scholar 

  • J.L. Fox, S.W. Bougher, Structure, luminosity, and dynamics of the Venus thermosphere, in Venus Aeronomy (Springer, Netherlands, 1991), pp. 357–489

    Chapter  Google Scholar 

  • J.L. Fox, A. Dalgarno, Ionization, luminosity, and heating of the upper atmosphere of Mars. J. Geophys. Res. 84(A12), 7315–7333 (1979). doi:10.1029/JA084iA12p07315

    Article  ADS  Google Scholar 

  • J.L. Fox, A.B. Hać, Spectrum of hot O at the exobases of the terrestrial planets. J. Geophys. Res. 102(A11), 24005 (1997)

    Article  ADS  Google Scholar 

  • J.L. Fox, N.E.F. Hać, Intensities of the Venusian N2 electron-impact excited dayglow emissions. J. Geophys. Res. 118, 7850–7863 (2013). doi:10.1002/2013JA019277

    Article  Google Scholar 

  • J.L. Fox, L.J. Paxton, \(\mathrm{CC}^{+}\) in the Venusian thermosphere/ionosphere. J. Geophys. Res. 110, A01311 (2005). doi:10.1029/2004JA010813

    Article  ADS  Google Scholar 

  • J.L. Fox, A.I.F. Stewart, The Venus ultraviolet aurora: a soft electron source. J. Geophys. Res. 96, 9829–9832 (1991)

    Article  ADS  Google Scholar 

  • J.L. Fox, K.Y. Sung, Solar activity variations of the Venus thermosphere/ionosphere. J. Geophys. Res. 106, 21305–21336 (2001)

    Article  ADS  Google Scholar 

  • Y. Futaana, G.S. Wieser, S. Barabash, J.G. Luhmann, Solar wind interaction and impact on the Venus atmosphere. Space Sci. Rev. 1–57 (2017). doi:10.1007/s11214-017-0362-8

  • Y. Futaana, J.Y. Chaufray, H.T. Smith, P. Garnier, H. Lichtenegger, M. Delva, H. Gröller, A. Mura, Exospheres and energetic neutral atoms of Mars, Venus and Titan. Space Sci. Rev. 162, 213–266 (2011). doi:10.1007/s11214-011-9834-4

    Article  ADS  Google Scholar 

  • R.F. Garcia, P. Drossart, G. Piccioni, M. López-Valverde, G. Occhipinti, Gravity waves in the upper atmosphere of Venus revealed by CO2 nonlocal thermodynamic equilibrium emissions. J. Geophys. Res. 114, E00B32 (2009). doi:10.1029/2008JE003073

    Article  ADS  Google Scholar 

  • A. García-Muñoz, F.P. Mills, G. Piccioni, P. Drossart, The near-infrared nitric oxide nightglow in the upper atmosphere of Venus. Proc. Natl. Acad. Sci. USA 106, 985–988 (2009a)

    Article  ADS  Google Scholar 

  • A. Garcıa-Muñoz, F.P. Mills, T.G. Slanger, G. Piccioni, P. Drossart, Visible and near-infrared nightglow of molecular oxygen in the atmosphere of Venus. J. Geophys. Res. 114, E12002 (2009b). doi:10.1029/2009JE003447

    Article  ADS  Google Scholar 

  • A. García-Muñoz, R. Hueso, A. Sánchez-Lavega, W.J. Markiewicz, D.V. Titov, O. Witasse, A. Opitz, Limb imaging of the Venus O2 visible nightglow with the Venus Monitoring Camera. Geophys. Res. Lett. 40, 2539–2543 (2013). doi:10.1002/grl.50553

    Article  ADS  Google Scholar 

  • J.-C. Gérard, I.A.F. Stewart, S. Bougher, The altitude distribution of the Venus ultraviolet nightglow and its implications on vertical transport properties. Geophys. Res. Lett. 8, 633–636 (1981)

    Article  ADS  Google Scholar 

  • J.-C. Gérard, C. Cox, A. Saglam, J.L. Bertaux, E. Villard, C. Nehme, Limb observations of the ultraviolet nitric oxide nightglow with SPICAV on board Venus Express. J. Geophys. Res. 113, E00b03 (2008b). doi:10.1029/2008je003078

    Article  Google Scholar 

  • J.-C. Gérard, B. Hubert, V.I. Shematovich, D.V. Bisikalo, G.R. Gladstone, The Venus ultraviolet oxygen dayglow and aurora: model comparison with observations. Planet. Space Sci. 56, 542–552 (2008a). doi:10.1016/j.pss.2007.11.008

    Article  ADS  Google Scholar 

  • J.-C. Gérard, A. Saglam, G. Piccioni, P. Drossart, C. Cox, S. Erard, R. Hueso, A. Sanchez-Lavega, Distribution of the O2 infrared nightglow observed with VIRTIS on board Venus Express. Geophys. Res. Lett. 35, L02207 (2008c). doi:10.1029/2007gl032021

    Article  ADS  Google Scholar 

  • J.-C. Gérard, A. Saglam, G. Piccioni, P. Drossart, F. Montmessin, J.L. Bertaux, Atomic oxygen distribution in the Venus mesosphere from observations of O2 infrared airglow by VIRTIS-Venus Express. Icarus 199, 264–272 (2009a). doi:10.1016/j.icarus.2008.09.016

    Article  ADS  Google Scholar 

  • J.-C. Gérard, C. Cox, L. Soret, A. Saglam, G. Piccioni, J.-L. Bertaux, P. Drossart, Concurrent observations of the ultraviolet nitric oxide and infrared O2 nightglow emissions with Venus Express. J. Geophys. Res. 114, E00B44 (2009b). doi:10.1029/2009JE003371

    Article  Google Scholar 

  • J.-C. Gérard, L. Soret, A. Saglam, G. Piccioni, P. Drossart, The distributions of the OH Meinel and O2 (\(\mathrm{a}^{1}\Delta\)\(\mathrm{X}^{3} \varSigma\)) nightglow emissions in the Venus mesosphere based on VIRTIS observations. Adv. Space Res. 45, 1268–1275 (2010). doi:10.1016/j.asr.2010.01.022

    Article  ADS  Google Scholar 

  • J.-C. Gérard, B. Hubert, J. Gustin, V.I. Shematovich, D. Bisikalo, G.R. Gladstone, L.W. Esposito, EUV spectroscopy of the Venus dayglow with UVIS on Cassini. Icarus 211, 70–80 (2011a). doi:10.1016/j.icarus.2010.09.020

    Article  ADS  Google Scholar 

  • J.-C. Gérard, J. Gustin, B. Hubert, G.R. Gladstone, L.W. Esposito, Measurements of the helium 584 Å airglow during the Cassini flyby of Venus. Planet. Space Sci. 59, 1524–1528 (2011b)

    Article  ADS  Google Scholar 

  • J.-C. Gérard, L. Soret, G. Piccioni, P. Drossart, Spatial correlation of OH Meinel and O2 infrared atmospheric nightglow emissions observed with VIRTIS-M on board Venus Express. Icarus 217, 813–817 (2012). doi:10.1016/j.icarus.2011.09.010

    Article  ADS  Google Scholar 

  • J.-C. Gérard, L. Soret, A. Migliorini, G. Piccioni, Oxygen nightglow emissions of Venus: vertical distribution and collisional quenching. Icarus 223, 602–608 (2013). doi:10.1016/j.icarus.2012.11.019

    Article  ADS  Google Scholar 

  • J.-C. Gérard, L. Soret, G. Piccioni, P. Drossart, Latitudinal structure of the Venus O2 infrared airglow: a signature of small-scale dynamical processes in the upper atmosphere. Icarus 236, 93–103 (2014). doi:10.1016/j.icarus.2014.03.028

    Article  Google Scholar 

  • P.J. Gierasch, R.M. Goody, R.E. Young, D. Crisp, C. Edwards, R. Kahn, D. Rider, A. Del Genio, R. Greeley, A. Hou, C.B. Leovy, D. McCleese, M. Newman, The general circulation of the Venus atmosphere: an assessment, in Venus II—Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (Univ. of Ariz. Press, Tuscon, 1997), pp. 459–500

    Google Scholar 

  • G. Gilli, Carbon monoxide and temperature in the upper atmosphere of Venus through the analysis of limb observations by VIRTIS/Venus Express. Ph.D thesis, Universidad de Granada, Spain (2012)

  • G. Gilli, M.A. López-Valverde, P. Drossart, G. Piccioni, S. Erard, A. Cardesín, Moinelo Limb observations of CO2 and CO non-LTE emissions in the Venus atmosphere by VIRTIS/Venus Express. J. Geophys. Res. 114, E00B29 (2009). doi:10.1029/2008JE003112

    Article  ADS  Google Scholar 

  • G. Gilli, M.A. López-Valverde, B. Funke, M. López-Puertas, P. Drossart, G. Piccioni, V. Formisano, Non-LTE CO limb emission at 4.7 μm in the upper atmosphere of Venus, Mars and Earth: observations and modeling. Planet. Space Sci. 59, 1010–1018 (2011). doi:10.1016/j.pss.2010.07.023

    Article  ADS  Google Scholar 

  • G. Gilli, M.A. López-Valverde, J. Peralta, S. Bougher, A. Brecht, P. Drossart, G. Piccioni, Carbon monoxide and temperature in the upper atmosphere of Venus from VIRTIS/Venus Express non-LTE limb measurements. Icarus 248, 478–498 (2015). doi:10.1016/j.icarus.2014.10.047

    Article  ADS  Google Scholar 

  • G. Gilli, S. Lebonnois, F. González-Galindo, M.A. López-Valverde, A. Stolzenbach, F. Lefèvre, J.Y. Chaufray, F. Lott, Thermal structure of the upper atmosphere of Venus simulated by a ground-to-thermosphere GCM. Icarus 281, 55–72 (2017)

    Article  ADS  Google Scholar 

  • Z. Girazian, P. Withers, B. Häusler, M. Pätzold, S. Tellmann, K. Peter, Characterization of the lower layer in the dayside Venus ionosphere and comparisons with Mars. Planet. Space Sci. 117, 146–158 (2015)

    Article  ADS  Google Scholar 

  • J.J. Goldstein, M.J. Mumma, T. Kostiuk, D. Deming, F. Espenak, D. Zipoy, Absolute wind velocities in the lower thermosphere of Venus using infrared heterodyne spectroscopy. Icarus 94, 45–63 (1991)

    Article  ADS  Google Scholar 

  • B.F. Gordiets, V.I. Panchenko, Nonequilibrium infrared emission and the natural laser effect in the Venus and Mars atmospheres. Cosm. Res. 34, 721–734 (1983)

    Google Scholar 

  • C.L. Gray, N.J. Chanover, T.G. Slanger, K. Molaverdikhani, The effect of solar flares, coronal mass ejections, and solar wind streams on Venus’ 5577 Å oxygen green line. Icarus 233, 342–347 (2014). doi:10.1016/j.icarus.2014.01.029

    Article  ADS  Google Scholar 

  • J.M. Grebowsky, J.I. Moses, W.D. Pesnell, Meteoric material, an important component of planetary atmospheres. Washington DC American Geophysical Union Geophysical Monograph Series 130, 235 (2002)

    ADS  Google Scholar 

  • H. Gröller, V.I. Shematovich, H.I.M. Lichtenegger, H. Lammer, M. Pfleger, Y.N. Kulikov, W. Macher, U.V. Amerstorfer, H.K. Biernat, Venus’ atomic hot oxygen environment. J. Geophys. Res. 115, E12017 (2010). doi:10.1029/2010JE003697

    Article  ADS  Google Scholar 

  • H. Gröller, H. Lammer, H.I.M. Lichtenegger, M. Pfleger, O. Dutuit, V.I. Shematovich, Y.N. Kulikov, H.K. Biernat, Hot oxygen atoms in the Venus nightside exosphere. Geophys. Res. Lett. 39, L03202 (2012). doi:10.1029/2011GL050421

    Article  ADS  Google Scholar 

  • G. Gronoff, J. Lilensten, C. Simon, M. Barthélemy, F. Leblanc, O. Dutuit, Modeling the Venus airglow. Astron. Astrophys. 482, 1015–1029 (2008)

    Article  ADS  Google Scholar 

  • S. Gulkis, R.K. Kakar, M.J. Klein, E.T. Olsen, W.J. Wilson, Venus: detection of variations in stratospheric carbon monoxide. in Planetary Atmospheres: Nineteenth Symposium of the Royal Society of Canada, ed. by A.V. Jones (Royal Society of Canada, Ottawa, 1977), p. 61

    Google Scholar 

  • M.A. Gurwell, D.O. Muhleman, K.P. Shah, G.L. Berge, D.J. Rudy, A.W. Grossman, Observations of the CO bulge on Venus and implications for mesospheric winds. Icarus 115, 141–158 (1995)

    Article  ADS  Google Scholar 

  • B. Häusler, M. Pätzold, G.L. Tyler, R.A. Simpson, M.K. Bird, V. Dehant, J.P. Barriot, W. Eidel, R. Mattei, S. Remus, J. Selle, S. Tellmann, T. Imamura, Radio science investigations by VeRa onboard the Venus Express spacecraft. Planet. Space Sci. 54, 1315–1335 (2006)

    Article  ADS  Google Scholar 

  • A.E. Hedin, H.B. Niemann, W.T. Kasprzak, A. Seiff, Global empirical model of the Venus thermosphere. J. Geophys. Res. 88, A1 (1983)

    Google Scholar 

  • R.R. Hodges, An exospheric perspective of isotopic fractionation of hydrogen on Venus. J. Geophys. Res. 104, 8463–8471 (1999)

    Article  ADS  Google Scholar 

  • R.R. Hodges, Distributions of hot oxygen for Venus and Mars. J. Geophys. Res. 105, 6971–6981 (2000). doi:10.1029/1999JE001138

    Article  ADS  Google Scholar 

  • C.W. Hord et al., Galileo ultraviolet spectrometer experiment: initial Venus and interplanetary cruise results. Science 253(5027), 1548–1550 (1991). doi:10.1126/science.253.5027.1548

    Article  ADS  Google Scholar 

  • N. Hoshino, H. Fujiwara, M. Takagi, Y. Takahashi, Y. Kasaba, Characteristics of planetary-scale waves simulated by a new Venusian mesosphere and thermosphere general circulation model. Icarus 217, 818–830 (2012). doi:10.1016/j.icarus.2011.06.039

    Article  ADS  Google Scholar 

  • H.T. Howard et al., Venus: Mass, gravity field, atmosphere, and ionosphere as measured by the Mariner 10 dual-frequency radio system. Science 183(4131), 1297–1301 (1974)

    Article  ADS  Google Scholar 

  • B. Hubert, J.C. Gérard, J. Gustin, V.I. Shematovich, D.V. Bisikalo, A.I. Stewart, G.R. Gladstone, UVIS observations of the FUV OI and CO 4P Venus dayglow during the Cassini flyby. Icarus 207, 549–557 (2010). doi:10.1016/j.icarus.2009.12.029

    Article  ADS  Google Scholar 

  • B. Hubert, J.-C. Gérard, J. Gustin, D.V. Bisikalo, V.I. Shematovich, G.R. Gladstone, Cassini-UVIS observation of dayglow FUV emissions of carbon in the thermosphere of Venus. Icarus 220, 635–646 (2012). doi:10.1016/j.icarus.2012.06.002

    Article  ADS  Google Scholar 

  • R.A. Hueso, A. Sánchez-Lavega, G. Piccioni, P. Drossart, J.-C. Gérard, I. Khatuntsev, L. Zasova, A. Migliorini, Morphology and dynamics of Venus oxygen airglow from Venus Express/Visible and Infrared Thermal Imaging Spectrometer observations. J. Geophys. Res. 113, E00B02 (2008). doi:10.1029/2008JE003081

    Article  ADS  Google Scholar 

  • D.L. Huestis, S.W. Bougher, J.L. Fox, M. Galand, R.E. Johnson, J.I. Moses, J.C. Pickering, Cross sections and reaction rates for comparative planetary aeronomy. Space Sci. Rev. 139, 63–105 (2008). doi:10.1007/s11214-008-9383-7

    Article  ADS  Google Scholar 

  • J.M. Jenkins, P.G. Steffes, D.P. Hinson, J.D. Twicken, G.L. Tyler, Radio occultation studies of the Venus atmosphere with the Magellan spacecraft 2: results from the October 1991 experiments. Icarus 110, 79–94 (1994)

    Article  ADS  Google Scholar 

  • M.A. Johnson, A.L. Betz, R.A. McLaren, C.H. Townes, E.C. Sutton, Nonthermal 10 micron CO2 emission lines in the atmospheres of Mars and Venus. Astrophys. J. 208, L145–L148 (1976). doi:10.1086/182252

    Article  ADS  Google Scholar 

  • H.U. Kaeufl, H. Rothermel, S. Drapatz, Investigation of the Martian atmosphere by 10 micron heterodyne spectroscopy. Astron. Astrophys. 136, 319–325 (1984)

    ADS  Google Scholar 

  • E. Kallio, J.Y. Chaufray, R. Modolo, D. Snowden, R. Winglee, Modeling of Venus, Mars, and Titan. Space Sci. Rev. 162, 267–307 (2011). doi:10.1007/s11214-011-9814-8

    Article  ADS  Google Scholar 

  • W.T. Kasprzak, H.B. Niemann, A.E. Hedin, S.W. Bougher, Wave-like perturbations observed at low altitudes by the Pioneer Venus Orbiter Neutral Mass Spectrometer during Orbiter entry. Geophys. Res. Lett. 20, 2755–2758 (1993)

    Article  ADS  Google Scholar 

  • W.T. Kasprzak, G.M. Keating, N.C. Hsu, A.I.F. Stewart, W.B. Colwell, S.W. Bougher, Solar activity behavior of the thermosphere, in Venus II (U. of Arizona Press, Tucson, 1997), p. 225

    Google Scholar 

  • G.M. Keating, J.Y. Nicholson III., L.R. Lake, Venus upper atmosphere structure. J. Geophys. Res. 85, 7941–7956 (1980)

    Article  ADS  Google Scholar 

  • D. Kella, P.J. Johnson, H.B. Pedersen, L. Vejby-Christenson, L.H. Andersen, The source of green light emission determined from a heavy-ion storage ring experiment. Science 276, 1530–1533 (1997)

    Article  Google Scholar 

  • A.J. Kliore, Recent results on the Venus atmosphere from Pioneer Venus radio-occultations. Adv. Space Res. 5, 41–49 (1985)

    Article  ADS  Google Scholar 

  • A.J. Kliore, Radio occultation observations of the ionospheres of Mars and Venus, in Venus and Mars: Atmospheres, Ionospheres and Solar Wind Interaction. AGU Geophysical Monograph, vol. 66 (1992)

    Google Scholar 

  • A.J. Kliore, J.G. Luhmann, Solar cycle effects on the structure of the electron density profiles in the dayside ionosphere of Venus. J. Geophys. Res. 96, 21281 (1991)

    Article  ADS  Google Scholar 

  • A.J. Kliore, G.S. Levy, D.L. Cain, G. Fjeldbo, S.I. Rasool, Atmosphere and ionosphere of Venus from the Mariner V S-band radio occultation measurement. Science 158, 1683–1688 (1967)

    Article  ADS  Google Scholar 

  • A.J. Kliore, I.R. Patel, A.F. Nagy, T.E. Cravens, T.I. Gombosi, Initial observations of the nightside ionosphere of Venus from Pioneer Venus Orbiter radio occultations. Science 205, 99–102 (1979a)

    Article  ADS  Google Scholar 

  • A.J. Kliore, R. Woo, J.W. Armstrong, I.R. Patel, T.A. Croft, The polar ionosphere of Venus near the terminator from early Pioneer Venus orbiter radio occultations. Science 203, 765–768 (1979b)

    Article  ADS  Google Scholar 

  • A.J. Kliore, V.I. Moroz, G.M. Keating, The Venus international reference atmosphere, in Adv. Space Res., vol. 5 (Pergamon Press, Elmsford, 1985), pp. 1–305

    Google Scholar 

  • A.J. Kliore, J.G. Luhmann, M.H.G. Zhang, The effect of the solar cycle on the maintenance of the nightside ionosphere of Venus. J. Geophys. Res. 96, 11065 (1991)

    Article  ADS  Google Scholar 

  • W.C. Knudsen, K.L. Miller, Pioneer Venus suprathermal electron flux measurements in the Venus umbra. J. Geophys. Res. 90, 2695–2702 (1985). doi:10.1029/JA090iA03p02695

    Article  ADS  Google Scholar 

  • W.C. Knudsen, K. Spenner, R.C. Whitten, J.R. Spreiter, K.L. Miller, V. Novak, Thermal structure and major ion composition of the Venus ionosphere: First RPA results from Venus orbiter. Science 203, 757–763 (1979a)

    Article  ADS  Google Scholar 

  • W.C. Knudsen, K. Spenner, R.C. Whitten, J.R. Spreiter, K.L. Miller, V. Novak, Thermal structure and energy influx to the day-and nightside Venus ionosphere. Science 205, 105–107 (1979b)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Venus spectroscopy in the 3000–8000 Å region by Veneras 9 and 10, in Venus, ed. by D.M. Hunten et al. (The University of Arizona Press, Tucson, 1983), pp. 459–483

    Google Scholar 

  • V.A. Krasnopolsky, Oxygen emissions in the night airglow of the Earth, Venus and Mars. Planet. Space Sci. 34, 511–518 (1986)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Venus night airglow: ground-based detection of OH, observations of O2 emissions, and photochemical model. Icarus 207, 17–27 (2010). doi:10.1016/j.icarus.2009.10.019

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Excitation of the oxygen nightglow on the terrestrial planets. Planet. Space Sci. 59, 754–766 (2011)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Nightside photochemical model and night airglow on Venus. Planet. Space Sci. 85, 78–88 (2013). doi:10.1016/j.pss.2013.05.022

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Observations of CO dayglow at 4.7 μm, CO mixing ratios, and temperatures at 74 and 104–111 km on Venus. Icarus 237, 340–349 (2014a). doi:10.1016/j.icarus.2014.04.043

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Observations of the CO dayglow at 4.7 μm on Mars: variations of temperature and CO mixing ratio at 50 km. Icarus 228, 189–196 (2014b)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, G.R. Gladstone, Helium on Mars and Venus: EUVE observations and modeling. Icarus 176(2), 395–407 (2005)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, V.A. Parshev, Photochemistry of the Venus atmosphere, in Venus, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (The University of Arizona Press, Tucson, 1983), pp. 459–483

    Google Scholar 

  • M.A. Krestyanikova, V.I. Shematovich, Stochastic models of hot planetary and satellite coronas: a hot oxygen corona of Mars. Sol. Syst. Res. 40, 384–392 (2006). doi:10.1134/S0038094606050030

    Article  ADS  Google Scholar 

  • S. Kumar, A.L. Broadfoot, He 584 Å airglow emission from Venus: Mariner 10 observations. Geophys. Res. Lett. 2, 357–360 (1975). doi:10.1029/GL002i008p00357

    Article  ADS  Google Scholar 

  • H. Lammer et al., Loss of hydrogen and oxygen from the upper atmosphere of Venus. Planet. Space Sci. 54, 1445–1456 (2006). doi:10.1016/j.pss.2006.04.022

    Article  ADS  Google Scholar 

  • S. Lebonnois et al., Superrotation of Venus’ atmosphere analysed with a full general circulation model. J. Geophys. Res. 115, E06006 (2010). doi:10.1029/2009JE003458

    Article  ADS  Google Scholar 

  • F. Leblanc, J.Y. Chaufray, J.L. Bertaux, On Martian nitrogen dayglow emission observed by SPICAM UV spectrograph/Mars Express. Geophys. Res. Lett. 34, L02206 (2007). doi:10.1029/2006GL028437

    Article  ADS  Google Scholar 

  • E. Lellouch, J.J. Goldstein, J. Rosenqvist, S.W. Bougher, G. Paubert, Global circulation, thermal structure, and carbon monoxide distribution in Venus’ mesosphere in 1991. Icarus 110, 315–339 (1994)

    Article  ADS  Google Scholar 

  • E. Lellouch, R.T. Clancy, D. Crisp, A. Kliore, D. Titov, S.W. Bougher, Monitoring of mesospheric structure and dynamics, in Venus II (U. of Arizona Press, Tucson, 1997), pp. 295–324

    Google Scholar 

  • E. Lellouch, G. Paubert, R. Moreno, A. Moullet, Monitoring Venus’ mesospheric winds in support of Venus Express: IRAM 30-m and APEX observations. Planet. Space Sci. 56, 1355–1367 (2008). doi:10.1016/j.pss.2008.06.010

    Article  ADS  Google Scholar 

  • H.I.M. Lichtenegger, H. Gröller, H. Lammer, Yu.N. Kulikov, V.I. Shematovich, On the elusive hot oxygen corona of Venus. Geophys. Res. Lett. 36, L10204 (2009). doi:10.1029/2009GL037575

    Article  ADS  Google Scholar 

  • S. Limaye et al., The thermal structure of the Venus atmosphere: intercomparison of Venus Express and ground based observations of vertical temperature and density profiles. Icarus 294, 124–155 (2017)

    Article  ADS  Google Scholar 

  • V.M. Linkin et al., VEGA balloon dynamics and vertical winds in the Venus middle cloud region. Science 231, 1417–1419 (1986)

    Article  ADS  Google Scholar 

  • M.A. López-Puertas, F.W. Taylor, Non-LTE Radiative Transfer in the Atmosphere (World Scientific Publishing Co., Singapore, 2001)

    Book  Google Scholar 

  • M.A. López-Valverde, M. López-Puertas, J.J. López-Moreno, V. Formisano, D. Grassi, A. Maturilli, E. Lellouch, P. Drossart, Analysis of CO2 non-LTE emissions at 4.3 μm in the Martian atmosphere as observed by PFS/Mars Express and SWS/ISO. Planet. Space Sci. 53, 1079–1087 (2005). doi:10.1016/j.pss.2005.03.007

    Article  ADS  Google Scholar 

  • M.A. López-Valverde, P. Drossart, R. Carlson, R. Mehlman, M. Roos-Serote, Non-LTE infrared observations at Venus: From NIMS/GALILEO to VIRTIS/Venus Express. Planet. Space Sci. 55, 1757–1771 (2007). doi:10.1016/j.pss.2007.01.008

    Article  ADS  Google Scholar 

  • M.A. López-Valverde, M. López-Puertas, B. Funke, G. Gilli, M. García-Comas, P. Drossart, G. Piccioni, V. Formisano, Modelling the atmospheric limb emission of CO2 at 4.3 μm in the terrestrial planets. Planet. Space Sci. 59, 988–998 (2011a). doi:10.1016/j.pss.2010.02.001

    Article  ADS  Google Scholar 

  • M.A. López-Valverde, G. Sonnabend, M. Sornig, P. Kroetz, Modelling the atmospheric CO2 10-μm non-thermal emission in Mars and Venus at high spectral resolution. Planet. Space Sci. 59, 999–1009 (2011b). doi:10.1016/j.pss.2010.11.011

    Article  ADS  Google Scholar 

  • R. Lundin, S. Barabash, Y. Futaana, M. Holmström, H. Perez-de-Tejada, J.-A. Sauvaud, A large-scale flow vortex in the Venus plasma tail and its fluid dynamic interpretation. Geophys. Res. Lett. 40, 1273–1278 (2013). doi:10.1002/grl.50309

    Article  ADS  Google Scholar 

  • Mariner Stanford Group, Venus: IonosphereAtmosphere as measured by dual-frequency radio occultation of Mariner V. Science 158, 1678–1683 (1967)

    Article  ADS  Google Scholar 

  • S.T. Massie, D.M. Hunten, D.R. Sowell, Day and night models of the Venus thermosphere. J. Geophys. Res. 88, 3955–3969 (1983). doi:10.1029/JA088iA05p03955

    Article  ADS  Google Scholar 

  • K. Masunaga, K. Seki, N. Terada, F. Tsuchiya, T. Kimura, K. Yoshioka, G. Murakami, A. Yamazaki, M. Kagitani, C. Tao, A. Fedorov, Y. Futaana, T.L. Zhang, D. Shiota, F. Leblanc, J.-Y. Chaufray, I. Yoshikawa, Periodic variations of oxygen EUV dayglow in the upper atmosphere of Venus: Hisaki/EXCEED observations. J. Geophys. Res. 120, 2037 (2015). doi:10.1002/2015JE004849

    Article  Google Scholar 

  • K. Masunaga, K. Seki, N. Terada, F. Tsuchiya, T. Kimura, K. Yoshioka, G. Murakami, A. Yamazaki, C. Tao, F. Leblanc, I. Yoshikawa, Dawn-dusk difference of periodic oxygen EUV dayglow variations at Venus observed by Hisaki. Icarus 292, 102–110 (2017). doi:10.1016/j.icarus.2016.12.027

    Article  ADS  Google Scholar 

  • H.G. Mayr, I. Harris, H.B. Niemann, H.C. Brinton, N.W. Spencer, H.A. Taylor, R.E. Hartle, W.R. Hoegy, D.M. Hunten, Dynamic properties of the thermosphere inferred from Pioneer Venus mass spectrometer measurements. J. Geophys. Res. 85, 7841–7847 (1980). doi:10.1029/JA085i.A13p07841

    Article  ADS  Google Scholar 

  • M.B. McElroy, M.J. Prather, J.M. Rodriguez, Escape of hydrogen from Venus. Science 215, 1614–1615 (1982). doi:10.1126/science.215.4540.1614

    Article  ADS  Google Scholar 

  • J.G. Mengel, H.G. Mayr, I. Harris, D.R. Stevens-Rayburn, Non-linear three-dimensional spectral model of the Venusian thermosphere with superrotation: II. Temperature, composition, and winds. Planet. Space Sci. 37, 707–722 (1989)

    Article  ADS  Google Scholar 

  • A. Migliorini, G. Piccioni, A. Cardesín-Moinelo, P. Drossart, Hydroxyl airglow on Venus in comparison with Earth. Planet. Space Sci. 59, 974–980 (2011). doi:10.1016/j.pss.2010.05.004

    Article  ADS  Google Scholar 

  • A. Migliorini, G. Piccioni, J.C. Gérard, L. Soret, T.G. Slanger, R. Politi, M. Snels, P. Drossart, F. Nuccilli, The characteristics of the O2 Herzberg II and Chamberlain bands observed with VIRTIS/Venus Express. Icarus 223, 609–614 (2013a). doi:10.1016/j.icarus.2012.11.017

    Article  ADS  Google Scholar 

  • A. Migliorini, G. Piccioni, F. Capaccioni, G. Filacchione, F. Tosi, J.C. Gérard, Comparative analysis of airglow emissions in terrestrial planets, observed with VIRTIS-M instruments on board Rosetta and Venus Express. Icarus 226, 1115–1127 (2013b). doi:10.1016/j.icarus.2013.07.027

    Article  ADS  Google Scholar 

  • A. Migliorini, M. Snels, J.C. Gérard, L. Soret, G. Piccioni, P. Drossart, Temperature estimation from hydroxyl airglow emission in the Venus night side mesosphere. Icarus 300, 386–391 (2018). doi:10.1016/j.icarus.2017.09.026

    Article  ADS  Google Scholar 

  • J.G. Molina-Cuberos, J.J. López-Moreno, F. Arnold, Meteoric layers in planetary atmospheres, in Planetary Atmospheric Electricity (Springer, New York, 2008), pp. 175–191

    Chapter  Google Scholar 

  • F. Montmessin, J.L. Bertaux, F. Lefèvre, E. Marcq, D. Belyaev, J.C. Gérard, O. Korablev, A. Fedorova, V. Sarago, A.C. Vandaele, A layer of ozone detected in the nightside upper atmosphere of Venus. Icarus 216, 1 (2011). doi:10.1016/j.icarus.2011.08.010

    Article  Google Scholar 

  • M.J. Mumma, D. Buhl, G. Chin, D. Deming, F. Espenak, T. Kostiuk, D. Zipoy, Discovery of natural gain amplification in the 10-micrometer carbon dioxide laser bands on Mars: a natural laser. Science 212, 45–49 (1981). doi:10.1126/science.212.4490.45

    Article  ADS  Google Scholar 

  • A.F. Nagy, T.E. Cravens, Hot oxygen atoms in the upper atmospheres of Venus and Mars. Geophys. Res. Lett. 15, 433–435 (1988)

    Article  ADS  Google Scholar 

  • A.F. Nagy, T.E. Cravens, J.H. Yee, A.I.F. Stewart, Hot oxygen atoms in the upper atmosphere of Venus. Geophys. Res. Lett. 8, 629–632 (1981)

    Article  ADS  Google Scholar 

  • A.F. Nagy, J. Kim, T.E. Cravens, Hot hydrogen and oxygen atoms in the upper atmospheres of Venus and Mars. Ann. Geophys. 8, 251–256 (1990)

    ADS  Google Scholar 

  • H. Nakagawa, N. Hoshino, M. Sornig, Y. Kasaba, G. Sonnabend, D. Stupar, S. Aoki, I. Murata, Comparison of general circulation model atmospheric wave simulations with wind observations of Venusian mesosphere. Icarus 225, 840–849 (2013)

    Article  ADS  Google Scholar 

  • M. Nakamura et al., Overview of Venus orbiter Akatsuki. Earth Planets Space 63(5), 443–457 (2011). doi:10.5047/eps.2011.02.009

    Article  ADS  Google Scholar 

  • H.B. Niemann, R.E. Hartle, A.E. Hedin, W.T. Kasprzak, N.W. Spencer, D.M. Hunten, G.R. Carignan, Venus upper atmosphere neutral gas composition: first observations of the diurnal variations. Science 205, 54–56 (1979)

    Article  ADS  Google Scholar 

  • H.B. Niemann, W.T. Kasprzak, A.E. Hedin, D.M. Hunten, N.W. Spencer, Mass spectrometer measurements of the neutral gas composition of the thermosphere and exosphere of Venus. J. Geophys. Res. 85, 7817–7827 (1980). doi:10.1029/JA085iA13p07817

    Article  ADS  Google Scholar 

  • S. Ohtsuki, N. Iwagami, H. Sagawa, Y. Kasaba, M. Ueno, T. Imamura, Ground-based observation of the Venus 1.27-μm O2 airglow. Adv. Space Res. 36, 2038–2042 (2005). doi:10.1016/j.asr.2005.05.078

    Article  ADS  Google Scholar 

  • S. Ohtsuki, N. Iwagami, H. Sagawa, M. Ueno, Y. Kasaba, T. Imamura, K. Yanagisawa, E. Nishihara, Distributions of the Venus 1.27-μm O2 airglow and rotational temperature. Planet. Space Sci. 56, 1391–1398 (2008). doi:10.1016/j.pss.2008.05.013

    Article  ADS  Google Scholar 

  • M. Pätzold, S. Tellmann, B. Häusler, D. Hinson, R. Schaa, G.L. Tyler, A sporadic third layer in the ionosphere of Mars. Science 310, 837–839 (2005)

    Article  ADS  Google Scholar 

  • M. Pätzold, B. Häusler, M.K. Bird, S. Tellmann, R. Mattei, S.W. Asmar, V. Dehant, W. Eidel, T. Imamura, R.A. Simpson, G.L. Tyler, The structure of Venus’ middle atmosphere and ionosphere. Nature 450, 657–660 (2007). doi:10.1038/nature06239

    Article  ADS  Google Scholar 

  • M. Pätzold, S. Tellmann, B. Häusler, M.K. Bird, G.L. Tyler, A.A. Christou, P. Withers, A sporadic layer in the Venus lower ionosphere of meteoric origin. Geophys. Res. Lett. 36, 5203–5206 (2009)

    Article  ADS  Google Scholar 

  • L.J. Paxton, Pioneer Venus Orbiter Ultraviolet Spectrometer limb observations: Analysis and interpretation of the 166- and 156-nm data. J. Geophys. Res. 90, 5089–5096 (1985)

    Article  ADS  Google Scholar 

  • L.J. Paxton, D.E. Anderson, Far ultraviolet remote sensing of Venus and Mars, in Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions, ed. by J.G. Luhmann, M. Tatrallyay, R.O. Pepin. Geophys. Monogr., vol. 66 (AGU, Washington, 1992). doi:10.1029/GM066p0113

    Google Scholar 

  • L.J. Paxton, D.E. Anderson, A.I.F. Stewart, Analysis of the Pioneer Venus Ultraviolet Spectrometer Lyman-alpha data from near the subsolar region. J. Geophys. Res. 93, 1766–1772 (1988a)

    Article  ADS  Google Scholar 

  • L.J. Paxton, D.E. Anderson, A.I.F. Stewart, Correction to: analysis of the Pioneer Venus Ultraviolet Spectrometer Lyman-alpha data from near the subsolar region. J. Geophys. Res. 93, 11551 (1988b)

    Article  ADS  Google Scholar 

  • J.B. Pechmann, A.P. Ingersoll, Thermal tides in the atmosphere of Venus – comparison of model results with observations. J. Atmos. Sci. 41, 3290–3313 (1984)

    Article  ADS  Google Scholar 

  • J. Peralta, R. Hueson, A. Sánchez-Lavega, G. Piccioni, O. Lanciano, P. Drossart, Characterization of mesoscale gravity waves in the upper and lower clouds of Venus from VEX-VIRTIS images. J. Geophys. Res. 113, E12 (2008). doi:10.1029/2008JE003185

    Article  Google Scholar 

  • J. Peralta, M.A. López-Valverde, G. Gilli, A. Piccialli, Dayside temperatures in the Venus upper atmosphere from Venus Express/VIRTIS nadir measurements at 4.3 μm. Astron. Astrophys. 585, A53 (2016). doi:10.1051/0004-6361/201527191

    Article  ADS  Google Scholar 

  • W.D. Pesnell, J. Grebowsky, Meteoric magnesium ions in the Martian atmosphere. J. Geophys. Res. 105, 1695–1708 (2000)

    Article  ADS  Google Scholar 

  • W.D. Pesnell, J. Grebowsky, P.A. Webb, Meteoric Ions in Venus’ Atmosphere, AGU Fall Meeting Abstracts, A238 (2004)

    Google Scholar 

  • K. Peter, M. Pätzold, G. Molina-Cuberos, O. Witasse, F. Gonzalez-Galindo, P. Withers, M.K. Bird, B. Häusler, D.P. Hinson, S. Tellmann, G.L. Tyler, The dayside ionospheres of Mars and Venus: comparing a one-dimensional photochemical model with MaRS (Mars Express) and VeRa (Venus Express) observations. Icarus 233, 66–82 (2014)

    Article  ADS  Google Scholar 

  • J.L. Phillips, A.I.F. Stewart, J.G. Luhmann, The Venus ultraviolet aurora: observations at 130.4 nm. Geophys. Res. Lett. 13, 1047–1050 (1986). doi:10.1029/GL013i010p01047

    Article  ADS  Google Scholar 

  • A. Piccialli et al., Cyclostrophic winds from the Visible and Infrared Thermal Imaging Spectrometer temperature sounding: A preliminary analysis. J. Geophys. Res. 113 (2008)

  • A. Piccialli, S. Tellmann, D.V. Titov, S.S. Limaye, I.V. Khatuntsev, M. Pätzold, B. Häusler, Dynamical properties of the Venus mesosphere from the radio-occultation experiment VeRa onboard Venus Express. Icarus 217, 669–681 (2012)

    Article  ADS  Google Scholar 

  • A. Piccialli, F. Montmessin, D. Belyaev, A. Mahieux, A. Fedorova, E. Marcq, J.L. Bertaux, A.C. Vandaele, O. Korablev, Thermal structure of Venus upper atmosphere measured by stellar occultations with SPICAV/Venus Express. Planet. Space Sci. 113(144), 321–335 (2015). doi:10.1016/j.pss.2014.12.009

    Article  ADS  Google Scholar 

  • A. Piccialli et al., CO2 non-LTE limb emissions in Mars’ atmosphere as observed by OMEGA/Mars Express. J. Geophys. Res. 121(6), 1066–1086 (2016). 2016. doi:10.1002/2015JE004981

    Article  Google Scholar 

  • G. Piccioni et al., First detection of hydroxyl in the atmosphere of Venus. Astron. Astrophys. 483, 3 (2008). doi:10.1051/0004-6361:200809761

    Article  Google Scholar 

  • G. Piccioni et al., Near-IR oxygen nightglow observed by VIRTIS in the Venus upper atmosphere. J. Geophys. Res. 114, E00b38 (2009). doi:10.1029/2008je003133

    Article  Google Scholar 

  • M. Rengel, P. Hartogh, D. Jarchow, Mesospheric vertical thermal structure and winds on Venus from HHSMT CO spectral-line observations. Planet. Space Sci. 56, 1368–1384 (2008). doi:10.1016/j.pss.2008.07.004

    Article  ADS  Google Scholar 

  • P.G. Richards, J.A. Fennelly, D.G. Torr, EUVAC: a solar EUV Flux Model for aeronomic calculations. J. Geophys. Res. 99(A5), 8981–8992 (1994). doi:10.1029/94JA00518

    Article  ADS  Google Scholar 

  • H. Rishbeth, M. Mendillo, Ionospheric layers of Mars and Earth. Planet. Space Sci. 52, 849–852 (2004)

    Article  ADS  Google Scholar 

  • A. Roldan, M.A. López-Valverde, M. Lopez-Puertas, D.P. Edwards, Non-LTE infrared emissions of CO2 in the atmosphere of Venus. Icarus 147, 11–25 (2000). doi:10.1006/icar.2000.6432

    Article  ADS  Google Scholar 

  • M. Roos-Serote, P. Drossart, Th. Encrenaz, E. Lellouch, R.W. Carlson, K.H. Baines, F.W. Taylor, The thermal structure of the middle Venusian atmosphere from the Galileo/NIMS spectra. Icarus 114, 300–309 (1995)

    Article  ADS  Google Scholar 

  • J. Rosenqvist, E. Lellouch, Th. Encrenaz, G. Pauber, Global circulation in Venus’ mesosphere from IRAM CO observations (1991–1994): a tribute to Jan Rosenqvist. Bull. Am. Astron. Soc. 27, 1080 (1995)

    ADS  Google Scholar 

  • W.B. Rossow, A.D. Del Genio, T. Eichler, Cloud-tracked winds from Pioneer Venus OCPP images. J. Atmos. Sci. 47, 2053–2084 (1990)

    Article  ADS  Google Scholar 

  • A. Sánchez-Lavega, S. Lebonnois, T. Imamura, P. Read, D. Luz, The atmospheric dynamics of Venus. Space Sci. Rev. 1–76 (2017). doi:10.1007/s11214-017-0389-x

  • K. Schafer et al., Infrared Fourier-Spectrometer experiment from Venera-15. Adv. Space Res. 10, 57–66 (1990)

    Article  ADS  Google Scholar 

  • F.P. Schloerb, S.E. Robinson, W.M. Irvine, Observations of CO in the stratosphere of Venus via its J = 0-1 rotational transition. Icarus 43, 121–127 (1980)

    Article  ADS  Google Scholar 

  • F. Schmülling, J. Goldstein, T. Kostiuk, T. Hewagama, D. Zipoy, High precision Wind measurements in the upper Venus atmosphere. Bull. Am. Astron. Soc. 32, 1121 (2000)

    ADS  Google Scholar 

  • G. Schubert, General circulation and the dynamical state of the Venus atmosphere, in Venus, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (U. Arizona Press, Tucson, 1983), pp. 681–765

    Google Scholar 

  • G. Schubert, S.W. Bougher, C.C. Covey, A.D. Del Genio, A.S. Grossman, J.L. Hollingsworth, S.S. Limaye, R.E. Young, Venus atmosphere dynamics: a continuing enigma in Exploring Venus as a Terrestrial Planet. AGU Geophysical Monograph, vol. 176, 2007, pp. 101–120

    Chapter  Google Scholar 

  • R.W. Schunk, A.F. Nagy, Ionospheres of the terrestrial planets. Rev. Geophys. Space Phys. 18, 813–852 (1980)

    Article  ADS  Google Scholar 

  • K.P. Shah, D.O. Muhleman, G.L. Berge, Measurement of winds in Venus’ upper mesosphere based on Doppler shifts of the 2.6-mm 12CO line. Icarus 93, 96–121 (1991)

    Article  ADS  Google Scholar 

  • A.V. Shakun, L.V. Zasova, G. Piccioni, P. Drossart, A. Migliorini, Investigation of oxygen O2 (\(\mathrm{a}^{1} \Delta _{\mathrm{g}}\)) emission on the nightside of Venus: nadir data of the VIRTIS-M experiment of the Venus Express mission. Cosm. Res. 48, 232–239 (2010). doi:10.1134/S0010952510030044

    Article  ADS  Google Scholar 

  • B.D. Shizgal, G.G. Arkos, Nonthermal escape of the atmospheres of Venus, Earth, and Mars. Rev. Geophys. 34, 483–505 (1996). doi:10.1029/96RG02213

    Article  ADS  Google Scholar 

  • T.G. Slanger, P.C. Cosby, D.L. Huestis, T.A. Bida, Discovery of the atomic oxygen green line in the Venus night airglow. Science 291, 463–465 (2001)

    Article  ADS  Google Scholar 

  • T.G. Slanger, D.L. Huestis, P.C. Cosby, N.J. Chanover, T.A. Bida, The Venus nightglow: ground-based observations and chemical mechanisms. Icarus 182, 1 (2006). doi:10.1016/j.icarus.2005.12.007

    Article  ADS  Google Scholar 

  • T.G. Slanger, N.J. Chanover, B.D. Sharpee, T.A. Bida, O/O2 emissions in the Venus nightglow. Icarus 217, 845–848 (2012)

    Article  ADS  Google Scholar 

  • G. Sonnabend, M. Sornig, R. Schieder, T. Kostiuk, J. Delgado, Temperatures in Venus upper atmosphere from mid-infrared heterodyne spectroscopy of CO2 around 10 μm wavelength. Planet. Space Sci. 56, 1407–1413 (2008). doi:10.1016/j.pss.2008.05.008

    Article  ADS  Google Scholar 

  • G. Sonnabend, P. Kroetz, M. Sornig, D. Stupar, Direct observations of Venus upper mesospheric temperatures from ground based spectroscopy of CO2. Geophys. Res. Lett. 37 (2010). doi:10.1029/2010GL043335

  • L. Soret, J.-C. Gérard, Is the O2 (\(\mathrm{a}^{1} \Delta _{\mathrm{g}}\)) Venus nightglow emission controlled by solar activity? Icarus 262, 170–172 (2015). doi:10.1016/j.icarus.2015.08.030

    Article  ADS  Google Scholar 

  • L. Soret, J.-C. Gérard, G. Piccioni, P. Drossart, Venus OH nightglow distribution based on VIRTIS limb observations from Venus Express. Geophys. Res. Lett. 37, L06805 (2010). doi:10.1029/2010GL042377

    Article  ADS  Google Scholar 

  • L. Soret, J.-C. Gérard, F. Montmessin, G. Piccioni, P. Drossart, J.L. Bertaux, Atomic oxygen on the Venus nightside: global distribution deduced from airglow mapping. Icarus 217, 849–855 (2012a). doi:10.1016/j.icarus.2011.03.034

    Article  ADS  Google Scholar 

  • L. Soret, J.-C. Gérard, G. Piccioni, P. Drossart, The OH Venus nightglow spectrum: intensity and vibrational composition from VIRTIS—Venus Express observations. Planet. Space Sci. 73, 1 (2012b). doi:10.1016/j.pss.2012.07.027

    Article  Google Scholar 

  • L. Soret, J.-C. Gérard, G. Piccioni, P. Drossart, Time variations of O2 (\(\mathrm{a}^{1} \Delta\)) nightglow spots on the Venus nightside and dynamics of the upper mesosphere. Icarus 237, 306–314 (2014). doi:10.1016/j.icarus.2014.03.034

    Article  ADS  Google Scholar 

  • M. Sornig, T. Livengood, G. Sonnabend, P. Kroetz, D. Stupar, T. Kostiuk, R. Schieder, Venus upper atmosphere winds from ground-based heterodyne spectroscopy of CO2 at 10 μm wavelength. Planet. Space Sci. 56, 1399–1406 (2008). doi:10.1016/j.pss.2008.05.006

    Article  ADS  Google Scholar 

  • K. Spenner, W.C. Knudsen, W. Lotze, Suprathermal electron fluxes in the Venus nightside ionosphere at moderate and high solar activity. J. Geophys. Res. 101, 4557–4563 (1996). doi:10.1029/95JE03495

    Article  ADS  Google Scholar 

  • P.G. Steffes, J.M. Jenkins, R.S. Austin, S.W. Asmar, D.T. Lyons, E.H. Seale, G.L. Tyler, Radio occultation studies of the Venus atmosphere with the Magellan spacecraft. 1: Experimental description and performance. Icarus 110, 71–78 (1994)

    Article  ADS  Google Scholar 

  • G.I. Stepanova, G.M. Shved, Radiative transfer in the 4.3-micron CO2 and 4.7-micron CO bands in the non-LTE Venus and Mars atmospheres, Transformation of absorbed solar energy. Sov. Astron. 29, 528–531 (1985)

    ADS  Google Scholar 

  • S.A. Stern, D.C. Slater, G.R. Gladstone, E. Wilkenson, W.C. Cash, J.C. Green, D.M. Hunten, T.C. Owen, L. Paxton, The 825–1110 Å EUV spectrum of Venus. Icarus 122, 200–204 (1996). doi:10.1006/icar.1996.0119

    Article  ADS  Google Scholar 

  • M.H. Stevens et al., New observations of molecular nitrogen in the Martian upper atmosphere by IUVS on MAVEN. Geophys. Res. Lett. 42, 9050–9056 (2015). doi:10.1002/2015GL065319

    Article  ADS  Google Scholar 

  • A.I.F. Stewart, J.-C. Gérard, D.W. Rusch, S.W. Bougher, Morphology of the Venus ultraviolet night airglow. J. Geophys. Res. 85, 7861–7870 (1980). doi:10.1029/JA085iA13p07861

    Article  ADS  Google Scholar 

  • A. Stiepen, L. Soret, J.-C. Gérard, C. Cox, J.L. Bertaux, The vertical distribution of the Venus NO nightglow: limb profiles inversion and one-dimensional modeling. Icarus 220, 981–989 (2012). doi:10.1016/j.icarus.2012.06.029

    Article  ADS  Google Scholar 

  • A. Stiepen, J.-C. Gérard, M. Dumont, C. Cox, J.L. Bertaux, Venus nitric oxide nightglow mapping from SPICAV nadir observations. Icarus 226, 428–436 (2013). doi:10.1016/j.icarus.2013.05.031

    Article  ADS  Google Scholar 

  • H.A. Taylor, H.C. Brinton, S.J. Bauer, R.E. Hartle, P.A. Cloutier, R.E. Daniell, T.M. Donahue, Ionosphere of Venus – first observations of day-night variations of the ion composition. Science 205, 96–99 (1979a)

    Article  ADS  Google Scholar 

  • F.W. Taylor, D.J. Diner, L.S. Elson, D.J. McCleese, J.V. Martonchik, J. Delderfield, S.P. Bradley, J.T. Schofield, J.C. Gille, M.T. Coffey, Temperature, cloud structure, and dynamics of Venus middle atmosphere by infrared remote sensing from Pioneer Orbiter. Science 205, 65–67 (1979b)

    Article  ADS  Google Scholar 

  • F.W. Taylor, R. Beer, M.T. Chahine, D.J. Diner, L.S. Elson, R.D. Haskins, D.J. McCleese, J.V. Martonchik, P.E. Reichley, S.P. Bradley, J. Delderfield, J.T. Schofield, C.B. Farmer, L. Froidevaux, J. Leung, M.T. Coffey, J.C. Gille, Structure and meteorology of the middle atmosphere of Venus: infrared remote sensing from the Pioneer Orbiter. J. Geophys. Res. 85, 7963–8006 (1980)

    Article  ADS  Google Scholar 

  • S. Tellmann, M. Pätzold, B. Häusler, M.K. Bird, G.L. Tyler, Structure of the Venus neutral atmosphere as observed by the Radio Science experiment VeRa on Venus Express. J. Geophys. Res. 114, E00B36 (2009). doi:10.1029/2008JE003204

    Article  ADS  Google Scholar 

  • S. Tellmann, B. Häusler, D.P. Hinson, G.L. Tyler, T.P. Andert, M.K. Bird, T. Imamura, M. Pätzold, S. Remus, Small-scale temperature fluctuations seen by the VeRa Radio Science Experiment on Venus Express. Icarus 221, 471–480 (2012)

    Article  ADS  Google Scholar 

  • S. Tingle S, The Dynamics of the Venusian Mesosphere and Thermosphere. Ph.D. Thesis, Imperial College London (2011)

  • D.V. Titov et al., Morphology of the cloud tops as observed by the Venus Express Monitoring Camera. Icarus 217, 682–701 (2012)

    Article  ADS  Google Scholar 

  • W.K. Tobiska, T. Woods, F. Eparvier, R. Viereck, L. Floyd, D. Bouwer, G. Rottman, O.R. White, The SOLAR2000 empirical solar irradiance model and forecast tool. J. Atmos. Sol.-Terr. Phys. 62(14), 1233–1250 (2000)

    Article  ADS  Google Scholar 

  • M.B. Vasilev, A.S. Vyshlov, M.A. Kolosov, A.P. Mesterton, N.A. Savich, V.A. Samovol, L.N. Samoznaev, A.I. Sidorenko, Two-frequency radio occultation measurements with Venera-9 and Venera-10 orbiters. Acta Astronaut. 7, 335–340 (1980)

    Article  ADS  Google Scholar 

  • U. von Zahn, K.H. Fricke, H. Hoffmann, K. Pelka, Venus-Eddy coefficients in the thermosphere and the inferred helium content of the lower atmosphere. Geophys. Res. Lett. 6, 337–340 (1979)

    Article  ADS  Google Scholar 

  • U. von Zahn, S. Kumar, H. Niemann, R. Prinn, Composition of the Venus atmosphere. in Venus, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (The University of Arizona Press, Tucson, 1983)

    Google Scholar 

  • T. Widemann, E. Lellouch, A. Campargue, New wind measurements in Venus’s lower mesosphere from visible spectroscopy. Planet. Space Sci. 55, 1741–1756 (2007). doi:10.1016/j.pss.2007.01.005

    Article  ADS  Google Scholar 

  • O. Witasse, A.F. Nagy, Outstanding aeronomy problems at Venus. Planet. Space Sci. 54, 13–14 (2006). doi:10.1016/j.pss.2006.04.028

    Article  Google Scholar 

  • P. Withers, A.A. Christou, J. Vaubaillon, Meteoric ion layers in the ionospheres of Venus and Mars: early observations and consideration of the role of meteor showers. Adv. Space Res. 52, 1207–1216 (2013)

    Article  ADS  Google Scholar 

  • R. Woo, A.J. Kliore, Magnetization of the ionospheres of Venus and Mars—results from radio occultation measurements. J. Geophys. Res. 96, 11073 (1991)

    Article  ADS  Google Scholar 

  • T.N. Woods, G. Rottman, Solar ultraviolet variability over time periods of aeronomic interest, in Atmospheres in the Solar System. Geophysical Monograph, vol. 130 (American Geophysical Union, Washington, 2002), pp. 221–233

    Google Scholar 

  • A.M. Zalucha, A.S. Brecht, S. Rafkin, S.W. Bougher, M.J. Alexander, Incorporation of a gravity wave momentum deposition parameterization into the VTGCM. J. Geophys. Res. 118 (2013). doi:10.1029/2012JE004168

  • S. Zhang, S.W. Bougher, M.J. Alexander, The impact of gravity waves on the Venus thermosphere and O2 IR nightglow. J. Geophys. Res. 101, 23195–23205 (1996)

    Article  ADS  Google Scholar 

  • T.L. Zhang et al., Initial Venus Express magnetic field observations of the magnetic barrier at solar minimum. Planet. Space Sci. 56, 790–795 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

JCG thanks L. Soret for her help during the preparation of the manuscript. MALV was funded by the Spanish Ministry of Economy and Innovation and by the FEDER funds under grant ESP2015-65064-C2-1-P (MINECO/FEDER) as well as by CSIC “intramural” project 01450E022. The research effort of S. Bougher was funded in part by the NASA Venus Express Participating Scientist program through a subcontract from Southwest Research Institute (SwRI) to the University of Michigan. In addition, S. Bougher was also supported by the NASA Solar System Working Program through a subcontract from Bay Area Environmental Research Institute (BAERI) to the University of Michigan. This work was partly supported by the SCOOP/BRAIN research contract from the Belgian Federal Science Policy Office (BELSPO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-C. Gérard.

Additional information

Venus III

Edited by Bruno Bézard, Christopher T. Russell, Takehiko Satoh, Suzanne E. Smrekar and Colin F. Wilson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gérard, JC., Bougher, S.W., López-Valverde, M.A. et al. Aeronomy of the Venus Upper Atmosphere. Space Sci Rev 212, 1617–1683 (2017). https://doi.org/10.1007/s11214-017-0422-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0422-0

Keywords

Navigation