Skip to main content
Log in

Geoeffective Properties of Solar Transients and Stream Interaction Regions

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Interplanetary Coronal Mass Ejections (ICMEs), their possible shocks and sheaths, and co-rotating interaction regions (CIRs) are the primary large-scale heliospheric structures driving geospace disturbances at the Earth. CIRs are followed by a faster stream where Alfvénic fluctuations may drive prolonged high-latitude activity. In this paper we highlight that these structures have all different origins, solar wind conditions and as a consequence, different geomagnetic responses. We discuss general solar wind properties of sheaths, ICMEs (in particular those showing the flux rope signatures), CIRs and fast streams and how they affect their solar wind coupling efficiency and the resulting magnetospheric activity. We show that there are two different solar wind driving modes: (1) Sheath-like with turbulent magnetic fields, and large Alfvén Mach (\(M_{A}\)) numbers and dynamic pressure, and (2) flux rope-like with smoothly varying magnetic field direction, and lower \(M_{A}\) numbers and dynamic pressure. We also summarize the key properties of interplanetary shocks for space weather and how they depend on solar cycle and the driver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. http://www.swpc.noaa.gov/noaa-scales-explanation.

  2. http://www.srl.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm.

References

  • B.-H. Ahn, S.-I. Akasofu, Y. Kamide, The Joule heat production rate and the particle energy injection rate as a function of the geomagnetic indices AE and AL. J. Geophys. Res. 88, 6275–6287 (1983). doi:10.1029/JA088iA08p06275

    Article  ADS  Google Scholar 

  • S.-I. Akasofu, Interplanetary energy flux associated with magnetospheric substorms. Planet. Space Sci. 27, 425–431 (1979). doi:10.1016/0032-0633(79)90119-3

    Article  ADS  Google Scholar 

  • S.-I. Akasofu, Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 28, 121–190 (1981). doi:10.1007/BF00218810

    Article  ADS  Google Scholar 

  • C.W. Allen, Relation between magnetic storms and solar activity. Mon. Not. R. Astron. Soc. 104, 13 (1944). doi:10.1093/mnras/104.1.13

    Article  ADS  Google Scholar 

  • M.V. Alves, E. Echer, W.D. Gonzalez, Geoeffectiveness of corotating interaction regions as measured by Dst index. J. Geophys. Res. Space Phys. 111, A07S05 (2006). doi:10.1029/2005JA011379

    Google Scholar 

  • A. Badruddin, Z. Falak, Study of the geoeffectiveness of coronal mass ejections, corotating interaction regions and their associated structures observed during Solar Cycle 23. Astrophys. Space Sci. 361, 253 (2016). doi:10.1007/s10509-016-2839-4

    Article  ADS  Google Scholar 

  • D.N. Baker, A.J. Klimas, D.A. Roberts, Examination of time-variable input effects in a nonlinear analogue magnetosphere model. Geophys. Res. Lett. 18, 1631–1634 (1991). doi:10.1029/91GL01048

    Article  ADS  Google Scholar 

  • D.N. Baker, X. Li, A. Pulkkinen, C.M. Ngwira, M.L. Mays, A.B. Galvin, K.D.C. Simunac, A major solar eruptive event in July 2012: defining extreme space weather scenarios. Space Weather 11, 585–591 (2013). doi:10.1002/swe.20097

    Article  ADS  Google Scholar 

  • S.D. Bale, M.A. Balikhin, T.S. Horbury, V.V. Krasnoselskikh, H. Kucharek, E. Möbius, S.N. Walker, A. Balogh, D. Burgess, B. Lembège, E.A. Lucek, M. Scholer, S.J. Schwartz, M.F. Thomsen, Quasi-perpendicular shock structure and processes. Space Sci. Rev. 118, 161–203 (2005). doi:10.1007/s11214-005-3827-0

    Article  ADS  Google Scholar 

  • A. Balogh, P. Riley, Overview of Heliospheric Shocks, in Cosmic Winds and the Heliosphere (University of Arizona Press, Tucson, 1997)

    Google Scholar 

  • A. Balogh, E.J. Smith, B.T. Tsurutani, D.J. Southwood, R.J. Forsyth, T.S. Horbury, The heliospheric magnetic field over the South polar region of the Sun. Science 268, 1007–1010 (1995). doi:10.1126/science.268.5213.1007

    Article  ADS  Google Scholar 

  • A. Balogh, V. Bothmer, N.U. Crooker, R.J. Forsyth, G. Gloeckler, A. Hewish, M. Hilchenbach, R. Kallenbach, B. Klecker, J.A. Linker, E. Lucek, G. Mann, E. Marsch, A. Posner, I.G. Richardson, J.M. Schmidt, M. Scholer, Y.-M. Wang, R.F. Wimmer-Schweingruber, M.R. Aellig, P. Bochsler, S. Hefti, Z. Mikić, The solar origin of corotating interaction regions and their formation in the inner heliosphere. Space Sci. Rev. 89, 141–178 (1999). doi:10.1023/A:1005245306874

    Article  ADS  Google Scholar 

  • J. Bartels, Terrestrial-magnetic activity and its relations to solar phenomena. Terr. Magn. Atmos. Electr. (J. Geophys. Res.) 37, 1 (1932). doi:10.1029/TE037i001p00001

    Article  ADS  MATH  Google Scholar 

  • J.W. Belcher, L. Davis Jr., Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 76, 3534 (1971). doi:10.1029/JA076i016p03534

    Article  ADS  Google Scholar 

  • X. Blanco-Cano, P. Kajdič, N. Omidi, C.T. Russell, Foreshock cavitons for different interplanetary magnetic field geometries: simulations and observations. J. Geophys. Res. Space Phys. 116, 09101 (2011). doi:10.1029/2010JA016413

    ADS  Google Scholar 

  • X. Blanco-Cano, P. Kajdič, E. Aguilar-Rodríguez, C.T. Russell, L.K. Jian, J.G. Luhmann, Interplanetary shocks and foreshocks observed by STEREO during 2007–2010. J. Geophys. Res. Space Phys. 121, 992–1008 (2016). doi:10.1002/2015JA021645

    Article  ADS  Google Scholar 

  • J.E. Borovsky, The rudiments of a theory of solar wind/magnetosphere coupling derived from first principles. J. Geophys. Res. Space Phys. 113, 08228 (2008). doi:10.1029/2007JA012646

    ADS  Google Scholar 

  • J.E. Borovsky, J. Birn, The solar wind electric field does not control the dayside reconnection rate. J. Geophys. Res. Space Phys. 119, 751–760 (2014). doi:10.1002/2013JA019193

    Article  ADS  Google Scholar 

  • J.E. Borovsky, M.H. Denton, Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. Space Phys. 111, A07S08 (2006). doi:10.1029/2005JA011447

    Google Scholar 

  • J.E. Borovsky, M.H. Denton, The differences between storms driven by helmet streamer CIRs and storms driven by pseudostreamer CIRs. J. Geophys. Res. Space Phys. 118, 5506–5521 (2013). doi:10.1002/jgra.50524

    Article  ADS  Google Scholar 

  • J.E. Borovsky, H.O. Funsten, Role of solar wind turbulence in the coupling of the solar wind to the Earth’s magnetosphere. J. Geophys. Res. Space Phys. 108, 1246 (2003). doi:10.1029/2002JA009601

    Article  ADS  Google Scholar 

  • J.E. Borovsky, K. Yakymenko, Substorm occurrence rates, substorm recurrence times, and solar wind structure. J. Geophys. Res. Space Phys. 122, 2973–2998 (2017). doi:10.1002/2016JA023625

    ADS  Google Scholar 

  • J.E. Borovsky, R.J. Nemzek, R.D. Belian, The occurrence rate of magnetospheric-substorm onsets—random and periodic substorms. J. Geophys. Res. 98, 3807–3813 (1993). doi:10.1029/92JA02556

    Article  ADS  Google Scholar 

  • J.E. Borovsky, M.F. Thomsen, D.J. McComas, The superdense plasma sheet: plasmaspheric origin, solar wind origin, or ionospheric origin? J. Geophys. Res. 102, 22089–22106 (1997). doi:10.1029/96JA02469

    Article  ADS  Google Scholar 

  • V. Bothmer, R. Schwenn, The structure and origin of magnetic clouds in the solar wind. Ann. Geophys. 16, 1–24 (1998). doi:10.1007/s00585-997-0001-x

    Article  ADS  Google Scholar 

  • O.J. Brambles, W. Lotko, B. Zhang, J. Ouellette, J. Lyon, M. Wiltberger, The effects of ionospheric outflow on ICME and SIR driven sawtooth events. J. Geophys. Res. Space Phys. 118, 6026–6041 (2013). doi:10.1002/jgra.50522

    Article  ADS  Google Scholar 

  • D. Burgess, E.A. Lucek, M. Scholer, S.D. Bale, M.A. Balikhin, A. Balogh, T.S. Horbury, V.V. Krasnoselskikh, H. Kucharek, B. Lembège, E. Möbius, S.J. Schwartz, M.F. Thomsen, S.N. Walker, Quasi-parallel shock structure and processes. Space Sci. Rev. 118, 205–222 (2005). doi:10.1007/s11214-005-3832-3

    Article  ADS  Google Scholar 

  • L.F.E. Burlaga, in Magnetic Clouds, ed. by R. Schwenn, E. Marsch (1991), p. 152

    Google Scholar 

  • L. Burlaga, E. Sittler, F. Mariani, R. Schwenn, Magnetic loop behind an interplanetary shock—Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673–6684 (1981). doi:10.1029/JA086iA08p06673

    Article  ADS  Google Scholar 

  • L.F. Burlaga, L. Klein, N.R. Sheeley Jr., D.J. Michels, R.A. Howard, M.J. Koomen, R. Schwenn, H. Rosenbauer, A magnetic cloud and a coronal mass ejection. Geophys. Res. Lett. 9, 1317–1320 (1982). doi:10.1029/GL009i012p01317

    Article  ADS  Google Scholar 

  • L.F. Burlaga, K.W. Behannon, L.W. Klein, Compound streams, magnetic clouds, and major geomagnetic storms. J. Geophys. Res. 92, 5725–5734 (1987). doi:10.1029/JA092iA06p05725

    Article  ADS  Google Scholar 

  • L.F. Burlaga, R.M. Skoug, C.W. Smith, D.F. Webb, T.H. Zurbuchen, A. Reinard, Fast ejecta during the ascending phase of solar cycle 23: ACE observations, 1998–1999. J. Geophys. Res. 106, 20957–20978 (2001). doi:10.1029/2000JA000214

    Article  ADS  Google Scholar 

  • L.F. Burlaga, S.P. Plunkett, O.C. St. Cyr, Successive CMEs and complex ejecta. J. Geophys. Res. Space Phys. 107, 1266 (2002). doi:10.1029/2001JA000255

    Article  ADS  Google Scholar 

  • R.K. Burton, R.L. McPherron, C.T. Russell, An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 80, 4204–4214 (1975). doi:10.1029/JA080i031p04204

    Article  ADS  Google Scholar 

  • H.V. Cane, I.G. Richardson, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996-2002. J. Geophys. Res. Space Phys. 108, 1156 (2003). doi:10.1029/2002JA009817

    Article  ADS  Google Scholar 

  • H.V. Cane, I.G. Richardson, G. Wibberenz, Helios 1 and 2 observations of particle decreases, ejecta, and magnetic clouds. J. Geophys. Res. Space Phys. 102, 7075–7086 (1997). doi:10.1029/97JA00149

    Article  ADS  Google Scholar 

  • R.C. Carrington, Description of a singular appearance seen in the Sun on September 1, 1859. Mon. Not. R. Astron. Soc. 20, 13–15 (1859). doi:10.1093/mnras/20.1.13

    Article  ADS  Google Scholar 

  • M.D. Cash, D.A. Biesecker, V. Pizzo, C.A. Koning, G. Millward, C.N. Arge, C.J. Henney, D. Odstrcil, Ensemble modeling of the 23 July 2012 coronal mass ejection. Space Weather 13, 611–625 (2015). doi:10.1002/2015SW001232

    Article  ADS  Google Scholar 

  • J.K. Chao, R.P. Lepping, A correlative study of ssc’s, interplanetary shocks, and solar activity. J. Geophys. Res. 79, 1799 (1974). doi:10.1029/JA079i013p01799

    Article  ADS  Google Scholar 

  • S. Chapman, V.C.A. Ferraro, The electrical state of solar streams of corpuscles. Mon. Not. R. Astron. Soc. 89, 470 (1929). doi:10.1093/mnras/89.5.470

    Article  ADS  MATH  Google Scholar 

  • E.W. Cliver, L. Svalgaard, The 1859 solar-terrestrial disturbance and the current limits of extreme space weather activity. Sol. Phys. 224, 407–422 (2004). doi:10.1007/s11207-005-4980-z

    Article  ADS  Google Scholar 

  • G.T. Cocconi, K. Greisen, S. Hayakawa, P. Morrison, The cosmic ray flare effect. Nuovo Cimento 8, 161–168 (1958)

    Article  Google Scholar 

  • W.D. Cramer, N.E. Turner, M.-C. Fok, N.Y. Buzulukova, Effects of different geomagnetic storm drivers on the ring current: CRCM results. J. Geophys. Res. Space Phys. 118, 1062–1073 (2013). doi:10.1002/jgra.50138

    Article  ADS  Google Scholar 

  • S.R. Cranmer, Coronal holes and the high-speed solar wind. Space Sci. Rev. 101, 229–294 (2002)

    Article  ADS  Google Scholar 

  • N.U. Crooker, Solar and heliospheric geoeffective disturbances. J. Atmos. Sol.-Terr. Phys. 62, 1071–1085 (2000). doi:10.1016/S1364-6826(00)00098-5

    Article  ADS  Google Scholar 

  • N.U. Crooker, C.-L. Huang, S.M. Lamassa, D.E. Larson, S.W. Kahler, H.E. Spence, Heliospheric plasma sheets. J. Geophys. Res. Space Phys. 109, 03107 (2004). doi:10.1029/2003JA010170

    Article  ADS  Google Scholar 

  • N.U. Crooker, S.K. Antiochos, X. Zhao, M. Neugebauer, Global network of slow solar wind. J. Geophys. Res. Space Phys. 117, 04104 (2012). doi:10.1029/2011JA017236

    ADS  Google Scholar 

  • J.J. Curto, T. Araki, L.F. Alberca, Evolution of the concept of sudden storm commencements and their operative identification. Earth Planets Space 59, i–xii (2007)

    Article  Google Scholar 

  • I.A. Daglis, J.U. Kozyra, Outstanding issues of ring current dynamics. J. Atmos. Sol.-Terr. Phys. 64, 253–264 (2002). doi:10.1016/S1364-6826(01)00087-6

    Article  ADS  Google Scholar 

  • I.A. Daglis, R.M. Thorne, W. Baumjohann, S. Orsini, The terrestrial ring current: origin, formation, and decay. Rev. Geophys. 37, 407–438 (1999). doi:10.1029/1999RG900009

    Article  ADS  Google Scholar 

  • M.H. Denton, J.E. Borovsky, R.M. Skoug, M.F. Thomsen, B. Lavraud, M.G. Henderson, R.L. McPherron, J.C. Zhang, M.W. Liemohn, Geomagnetic storms driven by ICME- and CIR-dominated solar wind. J. Geophys. Res. Space Phys. 111, A07S07 (2006). doi:10.1029/2005JA011436

    Google Scholar 

  • A.P. Dimmock, K. Nykyri, H. Karimabadi, A. Osmane, T.I. Pulkkinen, A statistical study into the spatial distribution and dawn-dusk asymmetry of dayside magnetosheath ion temperatures as a function of upstream solar wind conditions. J. Geophys. Res. Space Phys. 120, 2767–2782 (2015). doi:10.1002/2014JA020734

    Article  ADS  Google Scholar 

  • J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47–48 (1961). doi:10.1103/PhysRevLett.6.47

    Article  ADS  Google Scholar 

  • E. Echer, W.D. Gonzalez, Geoeffectiveness of interplanetary shocks, magnetic clouds, sector boundary crossings and their combined occurrence. Geophys. Res. Lett. 31, 09808 (2004). doi:10.1029/2003GL019199

    ADS  Google Scholar 

  • E. Echer, W.D. Gonzalez, B.T. Tsurutani, Interplanetary conditions leading to superintense geomagnetic storms (\(\mbox{Dst} \leq - 250~\mbox{nT}\)) during Solar Cycle 23. Geophys. Res. Lett. 35, L06S03 (2008a). doi:10.1029/2007GL0317

    Article  Google Scholar 

  • E. Echer, W.D. Gonzalez, B.T. Tsurutani, A.L.C. Gonzalez, Interplanetary conditions causing intense geomagnetic storms (\(\mbox{Dst} \leq -100~\mbox{nT}\)) during Solar Cycle 23 (1996–2006). J. Geophys. Res. 113, A05221 (2008b). doi:10.1029/2007JA012744

    ADS  Google Scholar 

  • W. Ellis, On the relation between the diurnal range of magnetic declination and horizontal force and the period of solar spot frequency. Proc. R. Soc. Lond. Ser. I 63, 64–78 (1898)

    Article  Google Scholar 

  • C. Farrugia, D. Berdichevsky, Evolutionary signatures in complex ejecta and their driven shocks. Ann. Geophys. 22, 3679–3698 (2004). doi:10.5194/angeo-22-3679-2004

    Article  ADS  Google Scholar 

  • C.J. Farrugia, M.P. Freeman, L.F. Burlaga, R.P. Lepping, K. Takahashi, The Earth’s magnetosphere under continued forcing—substorm activity during the passage of an interplanetary magnetic cloud. J. Geophys. Res. 98, 7657–7671 (1993). doi:10.1029/92JA02351

    Article  ADS  Google Scholar 

  • C.J. Farrugia, V.K. Jordanova, M.F. Thomsen, G. Lu, S.W.H. Cowley, K.W. Ogilvie, A two-ejecta event associated with a two-step geomagnetic storm. J. Geophys. Res. Space Phys. 111, 11104 (2006). doi:10.1029/2006JA011893

    Article  ADS  Google Scholar 

  • F.R. Fenrich, J.G. Luhmann, Geomagnetic response to magnetic clouds of different polarity. Geophys. Res. Lett. 25, 2999–3002 (1998). doi:10.1029/98GL51180

    Article  ADS  Google Scholar 

  • S.E. Forbush, On the effects in cosmic-ray intensity observed during the recent magnetic storm. Phys. Rev. 51, 1108–1109 (1937). doi:10.1103/PhysRev.51.1108.3

    Article  ADS  Google Scholar 

  • J. Geiss, G. Gloeckler, R. von Steiger, Origin of the solar wind from composition data. Space Sci. Rev. 72, 49–60 (1995). doi:10.1007/BF00768753

    Article  ADS  Google Scholar 

  • T. Gold, Discussion on shock waves and rarefied gas dynamics, in Gas Dynamics of Cosmic Clouds. IAU Symposium, vol. 2 (1955), pp. 97–105

    Google Scholar 

  • T. Gold, Magnetic storms. Space Sci. Rev. 1, 100–114 (1962). doi:10.1007/BF00174637

    Article  ADS  Google Scholar 

  • H. Goldstein, On the field configuration in magnetic clouds, in NASA Conference Publication. NASA Conference Publication, vol. 228 (1983)

    Google Scholar 

  • W.D. Gonzalez, B.T. Tsurutani, Criteria of interplanetary parameters causing intense magnetic storms (Dst of less than −100 nT). Planet. Space Sci. 35, 1101–1109 (1987). doi:10.1016/0032-0633(87)90015-8

    Article  ADS  Google Scholar 

  • W.D. Gonzalez, A.L.C. Gonzalez, B.T. Tsurutani, Dual-peak solar cycle distribution of intense geomagnetic storms. Planet. Space Sci. 38, 181–187 (1990). doi:10.1016/0032-0633(90)90082-2

    Article  ADS  Google Scholar 

  • W.D. Gonzalez, J.A. Joselyn, Y. Kamide, H.W. Kroehl, G. Rostoker, B.T. Tsurutani, V.M. Vasyliunas, What is a geomagnetic storm? J. Geophys. Res. 99, 5771–5792 (1994). doi:10.1029/93JA02867

    Article  ADS  Google Scholar 

  • W.D. Gonzalez, A.L.C. de Gonzalez, A. Dal Lago, B.T. Tsurutani, J.K. Arballo, G.K. Lakhina, B. Buti, C.M. Ho, S.-T. Wu, Magnetic cloud field intensities and solar wind velocities. Geophys. Res. Lett. 25, 963–966 (1998)

    Article  ADS  Google Scholar 

  • W.D. Gonzalez, B.T. Tsurutani, A.L. Clúa de Gonzalez, Interplanetary origin of geomagnetic storms. Space Sci. Rev. 88, 529–562 (1999). doi:10.1023/A:1005160129098

    Article  ADS  Google Scholar 

  • W.D. Gonzalez, E. Echer, B.T. Tsurutani, A.L. Clúa de Gonzalez, A. Dal Lago, Interplanetary origin of intense, superintense and extreme geomagnetic storms. Space Sci. Rev. 158, 69–89 (2011). doi:10.1007/s11214-010-9715-2

    Article  ADS  Google Scholar 

  • J.A. González-Esparza, A. Balogh, R.J. Forsyth, M. Neugebauer, E.J. Smith, J.L. Phillips, Interplanetary shock waves and large-scale structures: Ulysses’ observations in and out of the ecliptic plane. J. Geophys. Res. 101, 17057–17072 (1996). doi:10.1029/96JA00685

    Article  ADS  Google Scholar 

  • N. Gopalswamy, S. Nunes, S. Yashiro, R.A. Howard, Variability of solar eruptions during cycle 23. Adv. Space Res. 34, 391–396 (2004). doi:10.1016/j.asr.2003.10.054

    Article  ADS  Google Scholar 

  • N. Gopalswamy, P. Makela, S. Akiyama, S. Yashiro, N. Thakur, CMEs during the two activity peaks in cycle 24 and their space weather consequences. Sun Geosph. 10, 111–118 (2015)

    ADS  Google Scholar 

  • J.T. Gosling, The solar flare myth. J. Geophys. Res. 98, 18937–18950 (1993). doi:10.1029/93JA01896

    Article  ADS  Google Scholar 

  • J.T. Gosling, D.J. McComas, Field line draping about fast coronal mass ejecta—a source of strong out-of-the-ecliptic interplanetary magnetic fields. Geophys. Res. Lett. 14, 355–358 (1987). doi:10.1029/GL014i004p00355

    Article  ADS  Google Scholar 

  • J.T. Gosling, V.J. Pizzo, Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci. Rev. 89, 21–52 (1999). doi:10.1023/A:1005291711900

    Article  ADS  Google Scholar 

  • J.T. Gosling, V. Pizzo, S.J. Bame, Anomalously low proton temperatures in the solar wind following interplanetary shock waves—evidence for magnetic bottles? J. Geophys. Res. 78, 2001 (1973). doi:10.1029/JA078i013p02001

    Article  ADS  Google Scholar 

  • J.T. Gosling, E. Hildner, R.M. MacQueen, R.H. Munro, A.I. Poland, C.L. Ross, Direct observations of a flare related coronal and solar wind disturbance. Sol. Phys. 40, 439–448 (1975). doi:10.1007/BF00162390

    Article  ADS  Google Scholar 

  • J.T. Gosling, J.R. Asbridge, S.J. Bame, W.C. Feldman, Solar wind stream interfaces. J. Geophys. Res. 83, 1401–1412 (1978). doi:10.1029/JA083iA04p01401

    Article  ADS  Google Scholar 

  • J.T. Gosling, D.J. McComas, J.L. Phillips, S.J. Bame, Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res. 96, 7831–7839 (1991). doi:10.1029/91JA00316

    Article  ADS  Google Scholar 

  • W.M.H. Greaves, H.W. Newton, On the recurrence of magnetic storms. Mon. Not. R. Astron. Soc. 89, 641–646 (1929). doi:10.1093/mnras/89.7.641

    Article  ADS  Google Scholar 

  • J. Guo, X. Feng, J. Zhang, P. Zuo, C. Xiang, Statistical properties and geoefficiency of interplanetary coronal mass ejections and their sheaths during intense geomagnetic storms. J. Geophys. Res. Space Phys. 115, 09107 (2010). doi:10.1029/2009JA015140

    Article  ADS  Google Scholar 

  • J. Guo, X. Feng, B.A. Emery, J. Zhang, C. Xiang, F. Shen, W. Song, Energy transfer during intense geomagnetic storms driven by interplanetary coronal mass ejections and their sheath regions. J. Geophys. Res. Space Phys. 116, 05106 (2011). doi:10.1029/2011JA016490

    Article  ADS  Google Scholar 

  • M.R. Hairston, K.A. Drake, R. Skoug, Saturation of the ionospheric polar cap potential during the October-November 2003 superstorms. J. Geophys. Res. Space Phys. 110, 0926 (2005). doi:10.1029/2004JA010864

    Google Scholar 

  • R. Hajra, E. Echer, B.T. Tsurutani, W.D. Gonzalez, Solar wind-magnetosphere energy coupling efficiency and partitioning: HILDCAAs and preceding CIR storms during solar cycle 23. J. Geophys. Res. Space Phys. 119, 2675–2690 (2014). doi:10.1002/2013JA019646

    Article  ADS  Google Scholar 

  • R.A. Harrison, J.A. Davies, C. Möstl, Y. Liu, M. Temmer, M.M. Bisi, J.P. Eastwood, C.A. de Koning, N. Nitta, T. Rollett, C.J. Farrugia, R.J. Forsyth, B.V. Jackson, E.A. Jensen, E.K.J. Kilpua, D. Odstrcil, D.F. Webb, An analysis of the origin and propagation of the multiple coronal mass ejections of 2010 August 1. Astrophys. J. 750, 45 (2012). doi:10.1088/0004-637X/750/1/45

    Article  ADS  Google Scholar 

  • H. Hasegawa, M. Fujimoto, T.-D. Phan, H. Rème, A. Balogh, M.W. Dunlop, C. Hashimoto, R. TanDokoro, Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin-Helmholtz vortices. Nature 430, 755–758 (2004). doi:10.1038/nature02799

    Article  ADS  Google Scholar 

  • T. Henke, J. Woch, R. Schwenn, U. Mall, G. Gloeckler, R. von Steiger, R.J. Forsyth, A. Balogh, Ionization state and magnetic topology of coronal mass ejections. J. Geophys. Res. 106, 10597–10614 (2001). doi:10.1029/2000JA900176

    Article  ADS  Google Scholar 

  • H. Hietala, T.V. Laitinen, K. Andréeová, R. Vainio, A. Vaivads, M. Palmroth, T.I. Pulkkinen, H.E.J. Koskinen, E.A. Lucek, H. Rème, Supermagnetosonic jets behind a collisionless quasiparallel shock. Phys. Rev. Lett. 103(24), 245001 (2009). doi:10.1103/PhysRevLett.103.245001

    Article  ADS  Google Scholar 

  • J. Hirshberg, A. Alksne, D.S. Colburn, S.J. Bame, A.J. Hundhausen, Observation of a solar flare induced interplanetary shock and helium-enriched driver gas. J. Geophys. Res. 75, 1 (1970). doi:10.1029/JA075i001p00001

    Article  ADS  Google Scholar 

  • L. Holappa, K. Mursula, T. Asikainen, A new method to estimate annual solar wind parameters and contributions of different solar wind structures to geomagnetic activity. J. Geophys. Res. Space Phys. 119, 9407–9418 (2014). doi:10.1002/2014JA020599

    Article  ADS  Google Scholar 

  • C.-S. Huang, G. Le, G.D. Reeves, Periodic magnetospheric substorms during fluctuating interplanetary magnetic field B z . Geophys. Res. Lett. 31, 14801 (2004). doi:10.1029/2004GL020180

    Article  ADS  Google Scholar 

  • K. Huttunen, H. Koskinen, Importance of post-shock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity. Ann. Geophys. 22, 1729–1738 (2004). doi:10.5194/angeo-22-1729-2004

    Article  ADS  Google Scholar 

  • K.E.J. Huttunen, H.E.J. Koskinen, R. Schwenn, Variability of magnetospheric storms driven by different solar wind perturbations. J. Geophys. Res. Space Phys. 107, 1121 (2002). doi:10.1029/2001JA900171

    Article  ADS  Google Scholar 

  • K.E.J. Huttunen, R. Schwenn, V. Bothmer, H.E.J. Koskinen, Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23. Ann. Geophys. 23, 625–641 (2005). doi:10.5194/angeo-23-625-2005

    Article  ADS  Google Scholar 

  • L. Jian, C.T. Russell, J.G. Luhmann, R.M. Skoug, Properties of interplanetary coronal mass ejections at one AU during 1995–2004. Sol. Phys. 239, 393–436 (2006a)

    Article  ADS  Google Scholar 

  • L. Jian, C.T. Russell, J.G. Luhmann, R.M. Skoug, Properties of stream interactions at one AU during 1995–2004. Sol. Phys. 239, 337–392 (2006b)

    Article  ADS  Google Scholar 

  • G.H. Jones, A. Balogh, Context and heliographic dependence of heliospheric planar magnetic structures. J. Geophys. Res. 105, 12713–12724 (2000). doi:10.1029/2000JA900003

    Article  ADS  Google Scholar 

  • G.H. Jones, A. Rees, A. Balogh, R.J. Forsyth, The draping of heliospheric magnetic fields upstream of coronal mass ejecta. Geophys. Res. Lett. 29, 1463 (2002). doi:10.1029/2001GL014110

    ADS  Google Scholar 

  • V.K. Jordanova, H. Matsui, P.A. Puhl-Quinn, M.F. Thomsen, K. Mursula, L. Holappa, Ring current development during high speed streams. J. Atmos. Sol.-Terr. Phys. 71, 1093–1102 (2009). doi:10.1016/j.jastp.2008.09.043

    Article  ADS  Google Scholar 

  • J.A. Joselyn, B.T. Tsurutani, Geomagnetic sudden impulses and storm sudden commencements—a note on terminology. EOS Trans. 71, 1808 (1990). doi:10.1029/90EO00350

    Article  ADS  Google Scholar 

  • S. Jurac, J.C. Kasper, J.D. Richardson, A.J. Lazarus, Geomagnetic disturbances and their relationship to interplanetary shock parameters. Geophys. Res. Lett. 29, 1463 (2002). doi:10.1029/2001GL014034

    ADS  Google Scholar 

  • Y. Kamide, W. Baumjohann, I.A. Daglis, W.D. Gonzalez, M. Grande, J.A. Joselyn, R.L. McPherron, J.L. Phillips, E.G.D. Reeves, G. Rostoker, A.S. Sharma, H.J. Singer, B.T. Tsurutani, V.M. Vasyliunas, Current understanding of magnetic storms: storm-substorm relationships. J. Geophys. Res. 103 17705–17728 (1998a)

    Article  ADS  Google Scholar 

  • Y. Kamide, J.-H. Shue, X. Li, G. Lu, M.J. Brittnacher, G.K. Parks, G.D. Reeves, Internally and externally triggered substorms: a case study of the January 10, 1997 events, in Substorms-4, 1998b

    Google Scholar 

  • Y. Kamide, N. Yokoyama, W. Gonzalez, B.T. Tsurutani, I.A. Daglis, A. Brekke, S. Masuda, Two-step development of geomagnetic storms. J. Geophys. Res. 103, 6917–6922 (1998c)

    Article  ADS  Google Scholar 

  • R. Kataoka, S. Watari, N. Shimada, H. Shimazu, K. Marubashi, Downstream structures of interplanetary fast shocks associated with coronal mass ejections. Geophys. Res. Lett. 32, 12103 (2005). doi:10.1029/2005GL022777

    ADS  Google Scholar 

  • R. Kataoka, D. Shiota, E. Kilpua, K. Keika, Pileup accident hypothesis of magnetic storm on 17 March 2015. Geophys. Res. Lett. 42, 5155–5161 (2015). doi:10.1002/2015GL064816

    Article  ADS  Google Scholar 

  • E.K.J. Kilpua, J.G. Luhmann, J. Gosling, Y. Li, H. Elliott, C.T. Russell, L. Jian, A.B. Galvin, D. Larson, P. Schroeder, K. Simunac, G. Petrie, Small solar wind transients and their connection to the large-scale coronal structure. Sol. Phys. 256, 327–344 (2009). doi:10.1007/s11207-009-9366-1

    Article  ADS  Google Scholar 

  • E.K.J. Kilpua, L.K. Jian, Y. Li, J.G. Luhmann, C.T. Russell, Multipoint ICME encounters: pre-STEREO and STEREO observations. J. Atmos. Sol.-Terr. Phys. 73, 1228–1241 (2011). doi:10.1016/j.jastp.2010.10.012

    Article  ADS  Google Scholar 

  • E.K.J. Kilpua, Y. Li, J.G. Luhmann, L.K. Jian, C.T. Russell, On the relationship between magnetic cloud field polarity and geoeffectiveness. Ann. Geophys. 30, 1037–1050 (2012). doi:10.5194/angeo-30-1037-2012

    Article  ADS  Google Scholar 

  • E.K.J. Kilpua, H. Hietala, H.E.J. Koskinen, D. Fontaine, L. Turc, Magnetic field and dynamic pressure ULF fluctuations in coronal-mass-ejection-driven sheath regions. Ann. Geophys. 31, 1559–1567 (2013a)

    Article  ADS  Google Scholar 

  • E.K.J. Kilpua, A. Isavnin, A. Vourlidas, H.E.J. Koskinen, L. Rodriguez, On the relationship between interplanetary coronal mass ejections and magnetic clouds. Ann. Geophys. 31, 1251–1265 (2013b)

    Article  ADS  Google Scholar 

  • E.K.J. Kilpua, E. Lumme, K. Andreeova, A. Isavnin, H.E.J. Koskinen, Properties and drivers of fast interplanetary shocks near the orbit of the Earth (1995–2013). J. Geophys. Res. 120, 4112–4125 (2015a)

    Article  Google Scholar 

  • E.K.J. Kilpua, N. Olspert, A. Grigorievskiy, M.J. Käpylä, E.I. Tanskanen, H. Miyahara, R. Kataoka, J. Pelt, Y.D. Liu, Statistical study of strong and extreme geomagnetic disturbances and solar cycle characteristics. Astrophys. J. 806, 272 (2015b)

    Article  ADS  Google Scholar 

  • E.K.J. Kilpua, H. Hietala, D.L. Turner, H.E.J. Koskinen, T.I. Pulkkinen, J.V. Rodriguez, G.D. Reeves, S.G. Claudepierre, H.E. Spence, Unraveling the drivers of the storm time radiation belt response. Geophys. Res. Lett. 42, 3076–3084 (2015c)

    Article  ADS  Google Scholar 

  • E.K.J. Kilpua, H.E.J. Koskinen, T.I. Pulkkinen, Coronal mass ejections and their sheath regions in interplanetary space. Living Rev. Sol. Phys. (2017)

  • L.W. Klein, L.F. Burlaga, Interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 87, 613–624 (1982). doi:10.1029/JA087iA02p00613

    Article  ADS  Google Scholar 

  • A.J. Klimas, D.N. Baker, D.A. Roberts, D.H. Fairfield, J. Buechner, A nonlinear dynamical analogue model of geomagnetic activity. J. Geophys. Res. 97, 12 (1992). doi:10.1029/92JA00794

    Article  Google Scholar 

  • D.J. Knipp, W.K. Tobiska, B.A. Emery, Direct and indirect thermospheric heating sources for solar cycles 21–23. Sol. Phys. 224, 495–505 (2004). doi:10.1007/s11207-005-6393-4

    Article  ADS  Google Scholar 

  • H.E.J. Koskinen, Physics of Space Storms: From the Solar Surface to the Earth (Springer, Berlin, 2011)

    Book  Google Scholar 

  • H.E.J. Koskinen, E.I. Tanskanen, Magnetospheric energy budget and the epsilon parameter. J. Geophys. Res. Space Phys. 107, 1415 (2002). doi:10.1029/2002JA009283

    Article  ADS  Google Scholar 

  • J.U. Kozyra, M.W. Liemohn, C.R. Clauer, A.J. Ridley, M.F. Thomsen, J.E. Borovsky, J.L. Roeder, V.K. Jordanova, W.D. Gonzalez, Multistep Dst development and ring current composition changes during the 4–6 June 1991 magnetic storm. J. Geophys. Res. Space Phys. 107, 1224 (2002). doi:10.1029/2001JA000023

    ADS  Google Scholar 

  • A.S. Krieger, A.F. Timothy, E.C. Roelof, A coronal hole and its identification as the source of a high velocity solar wind stream. Sol. Phys. 29, 505–525 (1973). doi:10.1007/BF00150828

    Article  ADS  Google Scholar 

  • B. Lavraud, J.E. Borovsky, Altered solar wind-magnetosphere interaction at low Mach numbers: coronal mass ejections. J. Geophys. Res. Space Phys. 113, 0008 (2008). doi:10.1029/2008JA013192

    Google Scholar 

  • B. Lavraud, M.F. Thomsen, J.E. Borovsky, M.H. Denton, T.I. Pulkkinen, Magnetosphere preconditioning under northward IMF: evidence from the study of coronal mass ejection and corotating interaction region geoeffectiveness. J. Geophys. Res. Space Phys. 111, 09208 (2006). doi:10.1029/2005JA011566

    Article  ADS  Google Scholar 

  • B. Lavraud, A. Ruffenach, A.P. Rouillard, P. Kajdic, W.B. Manchester, N. Lugaz, Geo-effectiveness and radial dependence of magnetic cloud erosion by magnetic reconnection. J. Geophys. Res. Space Phys. 119, 26–35 (2014). doi:10.1002/2013JA019154

    Article  ADS  Google Scholar 

  • G.-M. Le, Z.-Y. Cai, H.-N. Wang, Z.-Q. Yin, P. Li, Solar cycle distribution of major geomagnetic storms. Res. Astron. Astrophys. 13, 739–748 (2013). doi:10.1088/1674-4527/13/6/013

    Article  ADS  Google Scholar 

  • R.P. Lepping, L.F. Burlaga, J.A. Jones, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 95, 11957–11965 (1990). doi:10.1029/JA095iA08p11957

    Article  ADS  Google Scholar 

  • R.P. Lepping, L.F. Burlaga, A. Szabo, K.W. Ogilvie, W.H. Mish, D. Vassiliadis, A.J. Lazarus, J.T. Steinberg, C.J. Farrugia, L. Janoo, F. Mariani, The wind magnetic cloud and events of October 18-20, 1995: interplanetary properties and as triggers for geomagnetic activity. J. Geophys. Res. 102, 14049–14064 (1997). doi:10.1029/97JA00272

    Article  ADS  Google Scholar 

  • Y. Li, J.G. Luhmann, B.J. Lynch, E.K.J. Kilpua, Cyclic reversal of magnetic cloud poloidal field. Sol. Phys. 270, 331–346 (2011)

    Article  ADS  Google Scholar 

  • M.W. Liemohn, J.U. Kozyra, M.F. Thomsen, J.L. Roeder, G. Lu, J.E. Borovsky, T.E. Cayton, Dominant role of the asymmetric ring current in producing the stormtime Dst. J. Geophys. Res. 106, 10883–10904 (2001). doi:10.1029/2000JA000326

    Article  ADS  Google Scholar 

  • M.W. Liemohn, M. Jazowski, J.U. Kozyra, N. Ganushkina, M.F. Thomsen, J.E. Borovsky, CIR versus CME drivers of the ring current during intense magnetic storms. Proc. R. Soc. Lond. Ser. A 466, 3305–3328 (2010). doi:10.1098/rspa.2010.0075

    Article  ADS  Google Scholar 

  • F.A. Lindeman, Note on the theory of magnetic storms. Philos. Mag. 38, 669–684 (1911)

    Article  Google Scholar 

  • Y. Liu, J.D. Richardson, J.W. Belcher, A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4 AU. Planet. Space Sci. 53, 3–17 (2005). doi:10.1016/j.pss.2004.09.023

    Article  ADS  Google Scholar 

  • Y. Liu, J.D. Richardson, J.W. Belcher, J.C. Kasper, R.M. Skoug, Plasma depletion and mirror waves ahead of interplanetary coronal mass ejections. J. Geophys. Res. Space Phys. 111, 09108 (2006). doi:10.1029/2006JA011723

    Article  ADS  Google Scholar 

  • Y. Liu, J.G. Luhmann, R. Müller-Mellin, P.C. Schroeder, L. Wang, R.P. Lin, S.D. Bale, Y. Li, M.H. Acuña, J.-A. Sauvaud, A comprehensive view of the 2006 December 13 CME: from the Sun to interplanetary space. Astrophys. J. 689, 563–571 (2008a). doi:10.1086/592031

    Article  ADS  Google Scholar 

  • Y. Liu, W.B. Manchester, J.D. Richardson, J.G. Luhmann, R.P. Lin, S.D. Bale, Deflection flows ahead of ICMEs as an indicator of curvature and geoeffectiveness. J. Geophys. Res. 113, A00B03 (2008b)

    Google Scholar 

  • Y.D. Liu, J.G. Luhmann, C. Möstl, J.C. Martinez-Oliveros, S.D. Bale, R.P. Lin, R.A. Harrison, M. Temmer, D.F. Webb, D. Odstrcil, Interactions between coronal mass ejections viewed in coordinated imaging and in situ observations. Astrophys. J. Lett. 746, 15 (2012). doi:10.1088/2041-8205/746/2/L15

    Article  ADS  Google Scholar 

  • Y.D. Liu, J.G. Luhmann, N. Lugaz, C. Möstl, J.A. Davies, S.D. Bale, R.P. Lin, On Sun-to-Earth propagation of coronal mass ejections. Astrophys. J. 769, 45 (2013). doi:10.1088/0004-637X/769/1/45

    Article  ADS  Google Scholar 

  • Y.D. Liu, J.G. Luhmann, P. Kajdič, E.K.J. Kilpua, N. Lugaz, N.V. Nitta, C. Möstl, B. Lavraud, S.D. Bale, C.J. Farrugia, A.B. Galvin, Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nat. Commun. 5, 3481 (2014a)

    ADS  Google Scholar 

  • Y.D. Liu, Z. Yang, R. Wang, J.G. Luhmann, J.D. Richardson, N. Lugaz, Sun-to-Earth characteristics of two coronal mass ejections interacting near 1 AU: formation of a complex ejecta and generation of a two-step geomagnetic storm. Astrophys. J. Lett. 793, L41 2014b)

    Article  ADS  Google Scholar 

  • Y.D. Liu, H. Hu, R. Wang, Z. Yang, B. Zhu, Y.A. Liu, J.G. Luhmann, J.D. Richardson, Plasma and magnetic field characteristics of solar coronal mass ejections in relation to geomagnetic storm intensity and variability. Astrophys. J. Lett. 809, 34 (2015). doi:10.1088/2041-8205/809/2/L34

    Article  ADS  Google Scholar 

  • Y.D. Liu, H. Hu, C. Wang, J.G. Luhmann, J.D. Richardson, Z. Yang, R. Wang, On sun-to-Earth propagation of coronal mass ejections: II. Slow events and comparison with others. Astrophys. J. Suppl. Ser. 222, 23 (2016). doi:10.3847/0067-0049/222/2/23

    Article  ADS  Google Scholar 

  • M. Lockwood, M.J. Owens, L.A. Barnard, S. Bentley, C.J. Scott, C.E. Watt, On the origins and timescales of geoeffective IMF. Space Weather 14 406–432 (2015). doi:10.1002/2016SW001375

    Article  ADS  Google Scholar 

  • R.E. Lopez, M. Wiltberger, S. Hernandez, J.G. Lyon, Solar wind density control of energy transfer to the magnetosphere. Geophys. Res. Lett. 31, 08804 (2004). doi:10.1029/2003GL018780

    Article  ADS  Google Scholar 

  • R.E. Lopez, R. Bruntz, E.J. Mitchell, M. Wiltberger, J.G. Lyon, V.G. Merkin, Role of magnetosheath force balance in regulating the dayside reconnection potential. J. Geophys. Res. Space Phys. 115, 12216 (2010). doi:10.1029/2009JA014597

    ADS  Google Scholar 

  • E.A. Lucek, A. Balogh, The identification and characterization of Alfvénic fluctuations in ULYSSES data at midlatitudes. Astrophys. J. 507, 984–990 (1998). doi:10.1086/306372

    Article  ADS  Google Scholar 

  • E.A. Lucek, T.S. Horbury, I. Dandouras, H. RèMe, Cluster observations of the Earth’s quasi-parallel bow shock. J. Geophys. Res. Space Phys. 113, 0702 (2008). doi:10.1029/2007JA012756

    Google Scholar 

  • N. Lugaz, C.J. Farrugia, A new class of complex ejecta resulting from the interaction of two CMEs and its expected geoeffectiveness. Geophys. Res. Lett. 41, 769–776 (2014). doi:10.1002/2013GL058789

    Article  ADS  Google Scholar 

  • N. Lugaz, C.J. Farrugia, C.W. Smith, K. Paulson, Shocks inside CMEs: a survey of properties from 1997 to 2006. J. Geophys. Res. Space Phys. 120, 2409–2427 (2015). doi:10.1002/2014JA020848

    Article  ADS  Google Scholar 

  • N. Lugaz, C.J. Farrugia, C.-L. Huang, R.M. Winslow, H.E. Spence, N.A. Schwadron, Earth’s magnetosphere and outer radiation belt under sub-Alfvénic solar wind. Nat. Commun. 7, 13001 (2016)

    Article  ADS  Google Scholar 

  • L.R. Lyons, G.T. Blanchard, J.C. Samson, R.P. Lepping, T. Yamamoto, T. Moretto, Coordinated observations demonstrating external substorm triggering. J. Geophys. Res. 102, 27039–27052 (1997). doi:10.1029/97JA02639

    Article  ADS  Google Scholar 

  • W. Manchester, E.K.J. Kilpua, Y.D. Liu, N. Lugaz, P. Riley, T. Török, B. Vršnak, The physical processes of CME/ICME evolution. Space Sci. Rev. (2017, this issue). doi:10.1007/s11214-017-0394-0. http://adsabs.harvard.edu/abs/2017SSRv..tmp...90M. Provided by the SAO/NASA Astrophysics Data System

  • E.W. Maunder, Magnetic disturbance and associated sun-spots. Mon. Not. R. Astron. Soc. 65, 2 (1904). doi:10.1093/mnras/65.1.2

    Article  ADS  Google Scholar 

  • P.N. Mayaud, Derivation, Meaning, and Use of Geomagnetic Indices. Geophysical Monograph, vol. 22 (American Geophysical Union, Washington, 1980)

    Book  Google Scholar 

  • D.J. McComas, J.T. Gosling, S.J. Bame, E.J. Smith, H.V. Cane, A test of magnetic field draping induced BZ perturbations ahead of fast coronal mass ejecta. J. Geophys. Res. 94, 1465–1471 (1989). doi:10.1029/JA094iA02p01465

    Article  ADS  Google Scholar 

  • R.L. McPherron, T. Terasawa, A. Nishida, Solar wind triggering of substorm expansion onset. J. Geomagn. Geoelectr. 38, 1089–1108 (1986)

    Article  ADS  Google Scholar 

  • M.B. Moldwin, S. Ford, R. Lepping, J. Slavin, A. Szabo, Small-scale magnetic flux ropes in the solar wind. Geophys. Res. Lett. 27, 57–60 (2000). doi:10.1029/1999GL010724

    Article  ADS  Google Scholar 

  • S.K. Morley, M.P. Freeman, On the association between northward turnings of the interplanetary magnetic field and substorm onsets. Geophys. Res. Lett. 34, 08104 (2007). doi:10.1029/2006GL028891

    Article  ADS  Google Scholar 

  • P. Morrison, Solar origin of cosmic-ray time variations. Phys. Rev. 101, 1397–1404 (1956). doi:10.1103/PhysRev.101.1397

    Article  ADS  Google Scholar 

  • C. Möstl, C.J. Farrugia, E.K.J. Kilpua, L.K. Jian, Y. Liu, J.P. Eastwood, R.A. Harrison, D.F. Webb, M. Temmer, D. Odstrcil, J.A. Davies, T. Rollett, J.G. Luhmann, N. Nitta, T. Mulligan, E.A. Jensen, R. Forsyth, B. Lavraud, C.A. de Koning, A.M. Veronig, A.B. Galvin, T.L. Zhang, B.J. Anderson, Multi-point shock and flux rope analysis of multiple interplanetary coronal mass ejections around 2010 August 1 in the inner heliosphere. Astrophys. J. 758, 10 (2012). doi:10.1088/0004-637X/758/1/10

    Article  ADS  Google Scholar 

  • T. Mulligan, C.T. Russell, J.G. Luhmann, Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere. Geophys. Res. Lett. 25, 2959–2962 (1998). doi:10.1029/98GL01302

    Article  ADS  Google Scholar 

  • M. Myllys, N. Partamies, L. Juusola, Latitude dependence of long-term geomagnetic activity and its solar wind drivers. Ann. Geophys. 33, 573–581 (2015). doi:10.5194/angeo-33-573-2015

    Article  ADS  Google Scholar 

  • M. Myllys, E.K.J. Kilpua, B. Lavraud, T.I. Pulkkinen, Solar wind-magnetosphere coupling efficiency during ejecta and sheath-driven geomagnetic storms. J. Geophys. Res. Space Phys. 121, 4378–4396 (2016). doi:10.1002/2016JA022407

    Article  ADS  Google Scholar 

  • M. Myllys, E.K.J. Kipua, B. Lavraud, Interplay of solar wind parameters and physical mechanisms producing the saturation of the cross polar cap potential. Geophys. Res. Lett. 44, 3019–3027 (2017). doi:10.1002/2017GL072676

    Article  ADS  Google Scholar 

  • P.T. Newell, K. Liou, Solar wind driving and substorm triggering. J. Geophys. Res. Space Phys. 116, 03229 (2011). doi:10.1029/2010JA016139

    ADS  Google Scholar 

  • P.T. Newell, T. Sotirelis, K. Liou, C.-I. Meng, F.J. Rich, A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J. Geophys. Res. Space Phys. 112, 01206 (2007). doi:10.1029/2006JA012015

    ADS  Google Scholar 

  • H.W. Newton, A.S. Milsom, The distribution of great and small geomagnetic storms in the sunspot cycle. J. Geophys. Res. 59, 203–214 (1954). doi:10.1029/JZ059i002p00203

    Article  ADS  Google Scholar 

  • N.S. Nikolaeva, Y.I. Yermolaev, I.G. Lodkina, Dependence of geomagnetic activity during magnetic storms on the solar wind parameters for different types of streams. Geomagn. Aeron. 51, 49–65 (2011). doi:10.1134/S0016793211010099

    Article  ADS  Google Scholar 

  • J.T. Nolte, A.S. Krieger, A.F. Timothy, R.E. Gold, E.C. Roelof, G. Vaiana, A.J. Lazarus, J.D. Sullivan, P.S. McIntosh, Coronal holes as sources of solar wind. Sol. Phys. 46, 303–322 (1976). doi:10.1007/BF00149859

    Article  ADS  Google Scholar 

  • T.P. O’Brien, R.L. McPherron, An empirical phase space analysis of ring current dynamics: solar wind control of injection and decay. J. Geophys. Res. 105, 7707–7720 (2000). doi:10.1029/1998JA000437

    Article  ADS  Google Scholar 

  • D.M. Oliveira, J. Raeder, Impact angle control of interplanetary shock geoeffectiveness. J. Geophys. Res. Space Phys. 119, 8188–8201 (2014). doi:10.1002/2014JA020275

    Article  ADS  Google Scholar 

  • D.M. Oliveira, J. Raeder, Impact angle control of interplanetary shock geoeffectiveness: a statistical study. J. Geophys. Res. Space Phys. 120, 4313–4323 (2015). doi:10.1002/2015JA021147

    Article  ADS  Google Scholar 

  • N. Omidi, H. Zhang, D. Sibeck, D. Turner, Spontaneous hot flow anomalies at quasi-parallel shocks: 2. Hybrid simulations. J. Geophys. Res. Space Phys. 118, 173–180 (2013). doi:10.1029/2012JA018099

    Article  ADS  Google Scholar 

  • A. Osmane, A.P. Dimmock, R. Naderpour, T.I. Pulkkinen, K. Nykyri, The impact of solar wind ULF B z fluctuations on geomagnetic activity for viscous timescales during strongly northward and southward IMF. J. Geophys. Res. Space Phys. 120, 9307–9322 (2015). doi:10.1002/2015JA021505

    Article  ADS  Google Scholar 

  • M.J. Owens, P.J. Cargill, C. Pagel, G.L. Siscoe, N.U. Crooker, Characteristic magnetic field and speed properties of interplanetary coronal mass ejections and their sheath regions. J. Geophys. Res. Space Phys. 110, 01105 (2005). doi:10.1029/2004JA010814

    Article  ADS  Google Scholar 

  • E. Palmerio, E.K.J. Kilpua, N.P. Savani, Planar magnetic structures in coronal mass ejection-driven sheath regions. Ann. Geophys. 34, 313–322 (2016). doi:10.5194/angeo-34-313-2016

    Article  ADS  Google Scholar 

  • M. Palmroth, T.I. Pulkkinen, P. Janhunen, D.J. McComas, C.W. Smith, H.E.J. Koskinen, Role of solar wind dynamic pressure in driving ionospheric Joule heating. J. Geophys. Res. Space Phys. 109, 11302 (2004). doi:10.1029/2004JA010529

    Article  ADS  Google Scholar 

  • M. Palmroth, H.E.J. Koskinen, T.I. Pulkkinen, P.K. Toivanen, P. Janhunen, S.E. Milan, M. Lester, Magnetospheric feedback in solar wind energy transfer. J. Geophys. Res. Space Phys. 115, 0010 (2010). doi:10.1029/2010JA015746

    Google Scholar 

  • W. Park, J. Lee, Y. Yi, N. Ssessanga, S. Oh, Storm sudden commencements without interplanetary shocks. J. Astron. Space Sci. 32, 181–187 (2015). doi:10.5140/JASS.2015.32.3.181

    Article  ADS  Google Scholar 

  • J.H. Piddington, Interplanetary magnetic field and its control of cosmic-ray variations. Phys. Rev. 112, 589–596 (1958). doi:10.1103/PhysRev.112.589

    Article  ADS  Google Scholar 

  • T. Pulkkinen, Space weather: terrestrial perspective. Living Rev. Sol. Phys. 4, 1 (2007). doi:10.12942/lrsp-2007-1

    Article  ADS  Google Scholar 

  • T.I. Pulkkinen, A.P. Dimmock, A. Osmane, K. Nykyri, Solar wind energy input to the magnetosheath and at the magnetopause. Geophys. Res. Lett. 42, 4723–4730 (2015). doi:10.1002/2015GL064226

    Article  ADS  Google Scholar 

  • J. Raeder, G. Lu, Polar cap potential saturation during large geomagnetic storms. Adv. Space Res. 36, 1804–1808 (2005). doi:10.1016/j.asr.2004.05.010

    Article  ADS  Google Scholar 

  • P.H. Reiff, R.W. Spiro, T.W. Hill, Dependence of polar cap potential drop on interplanetary parameters. J. Geophys. Res. 86, 7639–7648 (1981). doi:10.1029/JA086iA09p07639

    Article  ADS  Google Scholar 

  • I.G. Richardson, H.V. Cane, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): catalog and summary of properties. Sol. Phys. 264, 189–237 (2010). doi:10.1007/s11207-010-9568-6

    Article  ADS  Google Scholar 

  • I.G. Richardson, H.V. Cane, Solar wind drivers of geomagnetic storms during more than four solar cycles. J. Space Weather Space Clim. 2(27), 01 (2012). doi:10.1051/swsc/2012001

    Google Scholar 

  • I.G. Richardson, D.F. Webb, J. Zhang, D.B. Berdichevsky, D.A. Biesecker, J.C. Kasper, R. Kataoka, J.T. Steinberg, B.J. Thompson, C.-C. Wu, A.N. Zhukov, Major geomagnetic storms (\(\mbox{Dst} \leq -100~\mbox{nT}\)) generated by corotating interaction regions. J. Geophys. Res. Space Phys. 111, 0709 (2006). doi:10.1029/2005JA011476

    Google Scholar 

  • P. Riley, R.M. Caplan, J. Giacalone, D. Lario, Y. Liu, Properties of the fast forward shock driven by the July 23 2012 extreme coronal mass ejection. Astrophys. J. 819, 57 (2016). doi:10.3847/0004-637X/819/1/57

    Article  ADS  Google Scholar 

  • A.P. Rouillard, N.R. Sheeley Jr., T.J. Cooper, J.A. Davies, B. Lavraud, E.K.J. Kilpua, R.M. Skoug, J.T. Steinberg, A. Szabo, A. Opitz, J.-A. Sauvaud, The solar origin of small interplanetary transients. Astrophys. J. 734, 7 (2011). doi:10.1088/0004-637X/734/1/7

    Article  ADS  Google Scholar 

  • A. Ruffenach, B. Lavraud, C.J. Farrugia, P. Démoulin, S. Dasso, M.J. Owens, J.-A. Sauvaud, A.P. Rouillard, A. Lynnyk, C. Foullon, N.P. Savani, J.G. Luhmann, A.B. Galvin, Statistical study of magnetic cloud erosion by magnetic reconnection. J. Geophys. Res. Space Phys. 120, 43–60 (2015). doi:10.1002/2014JA020628

    Article  ADS  Google Scholar 

  • C.T. Russell, R.L. McPherron, Semiannual variation of geomagnetic activity. J. Geophys. Res. 78, 92 (1973). doi:10.1029/JA078i001p00092

    Article  ADS  Google Scholar 

  • C.T. Russell, L.K. Jian, X. Blanco-Cano, J.G. Luhmann, STEREO observations of upstream and downstream waves at low Mach number shocks. Geophys. Res. Lett. 36, 03106 (2009). doi:10.1029/2008GL036991

    Article  ADS  Google Scholar 

  • C.T. Russell, R.A. Mewaldt, J.G. Luhmann, G.M. Mason, T.T. von Rosenvinge, C.M.S. Cohen, R.A. Leske, R. Gomez-Herrero, A. Klassen, A.B. Galvin, K.D.C. Simunac, The very unusual interplanetary coronal mass ejection of 2012 July 23: a blast wave mediated by solar energetic particles. Astrophys. J. 770, 38 (2013). doi:10.1088/0004-637X/770/1/38

    Article  ADS  Google Scholar 

  • T. Saemundsson, Statistics of geomagnetic storms and solar activity. Mon. Not. R. Astron. Soc. 123, 299 (1962). doi:10.1093/mnras/123.4.299

    Article  ADS  Google Scholar 

  • M.D. Salas, The curious events leading to the theory of shock waves. Shock Waves 16, 477–487 (2007). doi:10.1007/s00193-007-0084-z

    Article  ADS  MATH  Google Scholar 

  • A.A. Samsonov, D.G. Sibeck, J. Imber, MHD simulation for the interaction of an interplanetary shock with the Earth’s magnetosphere. J. Geophys. Res. Space Phys. 112, 12220 (2007). doi:10.1029/2007JA012627

    ADS  Google Scholar 

  • A.A. Samsonov, V.A. Sergeev, M.M. Kuznetsova, D.G. Sibeck, Asymmetric magnetospheric compressions and expansions in response to impact of inclined interplanetary shock. Geophys. Res. Lett. 42, 4716–4722 (2015). doi:10.1002/2015GL064294

    Article  ADS  Google Scholar 

  • R. Schwenn, Direct correlations between coronal transients and interplanetary disturbances. Space Sci. Rev. 34, 85–99 (1983). doi:10.1007/BF00221199

    Article  ADS  Google Scholar 

  • R. Schwenn, A. dal Lago, E. Huttunen, W.D. Gonzalez, The association of coronal mass ejections with their effects near the Earth. Ann. Geophys. 23, 1033–1059 (2005). doi:10.5194/angeo-23-1033-2005

    Article  ADS  Google Scholar 

  • V.A. Sergeev, R.J. Pellinen, T.I. Pulkkinen, Steady magnetospheric convection: a review of recent results. Space Sci. Rev. 75, 551–604 (1996). doi:10.1007/BF00833344

    Article  ADS  Google Scholar 

  • N.R. Sheeley Jr., A.P. Rouillard, Tracking streamer blobs into the heliosphere. Astrophys. J. 715, 300–309 (2010). doi:10.1088/0004-637X/715/1/300

    Article  ADS  Google Scholar 

  • N.R. Sheeley Jr., R.A. Howard, D.J. Michels, M.J. Koomen, R. Schwenn, K.H. Muehlhaeuser, H. Rosenbauer, Coronal mass ejections and interplanetary shocks. J. Geophys. Res. 90, 163–175 (1985). doi:10.1029/JA090iA01p00163

    Article  ADS  Google Scholar 

  • N.R. Sheeley, Y.-M. Wang, S.H. Hawley, G.E. Brueckner, K.P. Dere, R.A. Howard, M.J. Koomen, C.M. Korendyke, D.J. Michels, S.E. Paswaters, D.G. Socker, O.C. St. Cyr, D. Wang, P.L. Lamy, A. Llebaria, R. Schwenn, G.M. Simnett, S. Plunkett, D.A. Biesecker, Measurements of flow speeds in the corona between 2 and 30 \(R_{\odot}\). Astrophys. J. 484, 472–478 (1997)

    Article  ADS  Google Scholar 

  • J.-H. Shue, P. Song, C.T. Russell, J.T. Steinberg, J.K. Chao, G. Zastenker, O.L. Vaisberg, S. Kokubun, H.J. Singer, T.R. Detman, H. Kawano, Magnetopause location under extreme solar wind conditions. J. Geophys. Res. 103, 17691–17700 (1998). doi:10.1029/98JA01103

    Article  ADS  Google Scholar 

  • G. Siscoe, D. Odstrcil, Ways in which ICME sheaths differ from magnetosheaths. J. Geophys. Res. Space Phys. 113, 0007 (2008). doi:10.1029/2008JA013142

    Google Scholar 

  • G. Siscoe, P.J. MacNeice, D. Odstrcil, East-West asymmetry in coronal mass ejection geoeffectiveness. Space Weather 5, 04002 (2007). doi:10.1029/2006SW000286

    Article  ADS  Google Scholar 

  • E.J. Smith, J.A. Slavin, R.D. Zwickl, S.J. Bame, Shocks and storm sudden commencements, in Solar Wind Magnetosphere Coupling, ed. by Y. Kamide, J.A. Slavin. Astrophysics and Space Science Library, vol. 126 (1986), pp. 345–365

    Chapter  Google Scholar 

  • K. Snekvik, E.I. Tanskanen, E.K.J. Kilpua, An automated identification method for Alfvénic streams and their geoeffectiveness. J. Geophys. Res. Space Phys. 118, 5986–5998 (2013). doi:10.1002/jgra.50588

    Article  ADS  Google Scholar 

  • C.P. Sonett, D.S. Colburn, L. Davis, E.J. Smith, P.J. Coleman, Evidence for a collision-free magnetohydrodynamic shock in interplanetary space. Phys. Rev. Lett. 13, 153–156 (1964). doi:10.1103/PhysRevLett.13.153

    Article  ADS  Google Scholar 

  • P. Subramanian, K.P. Dere, Source regions of coronal mass ejections. Astrophys. J. 561, 372–395 (2001). doi:10.1086/323213

    Article  ADS  Google Scholar 

  • E.I. Tanskanen, J.A. Slavin, A.J. Tanskanen, A. Viljanen, T.I. Pulkkinen, H.E.J. Koskinen, A. Pulkkinen, J. Eastwood, Magnetospheric substorms are strongly modulated by interplanetary high-speed streams. Geophys. Res. Lett. 32, 16104 (2005). doi:10.1029/2005GL023318

    Article  ADS  Google Scholar 

  • M. Temmer, N.V. Nitta, Interplanetary propagation behavior of the fast coronal mass ejection on 23 July 2012. Sol. Phys. 290, 919–932 (2015). doi:10.1007/s11207-014-0642-3

    Article  ADS  Google Scholar 

  • T. Terasawa, M. Fujimoto, T. Mukai, I. Shinohara, Y. Saito, T. Yamamoto, S. Machida, S. Kokubun, A.J. Lazarus, J.T. Steinberg, R.P. Lepping, Solar wind control of density and temperature in the near-Earth plasma sheet: WIND/GEOTAIL collaboration. Geophys. Res. Lett. 24, 935–938 (1997). doi:10.1029/96GL04018

    Article  ADS  Google Scholar 

  • K. Toman, Identification of M-regions on the Sun. Nature 181, 641–642 (1958). doi:10.1038/181641a0

    Article  ADS  Google Scholar 

  • S. Tomczyk, S.W. McIntosh, Time-distance seismology of the solar corona with CoMP. Astrophys. J. 697, 1384–1391 (2009). doi:10.1088/0004-637X/697/2/1384

    Article  ADS  Google Scholar 

  • R. Tousey, The solar corona, in Space Research Conference, ed. by M.J. Rycroft, S.K. Runcorn. Space Research Conference, vol. 2 (1973), pp. 713–730

    Google Scholar 

  • R.A. Treumann, Fundamentals of collisionless shocks for astrophysical application, 1. Non-relativistic shocks. Astron. Astrophys. Rev. 17, 409–535 (2009). doi:10.1007/s00159-009-0024-2

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, W.D. Gonzalez, The cause of high-intensity long-duration continuous AE activity (HILDCAAS)—interplanetary Alfven wave trains. Planet. Space Sci. 35, 405–412 (1987). doi:10.1016/0032-0633(87)90097-3

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, E.J. Smith, W.D. Gonzalez, F. Tang, S.I. Akasofu, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979). J. Geophys. Res. 93, 8519–8531 (1988). doi:10.1029/JA093iA08p08519

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, Y.T. Lee, W.D. Gonzalez, F. Tang, Great magnetic storms. Geophys. Res. Lett. 19, 73–76 (1992). doi:10.1029/91GL02783

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, W.D. Gonzalez, A.L.C. Gonzalez, F. Tang, J.K. Arballo, M. Okada, Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J. Geophys. Res. 100, 21717–21734 (1995). doi:10.1029/95JA01476

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, X.-Y. Zhou, W.D. Gonzalez, A lack of substorm expansion phases during magnetic storms induced by magnetic clouds, in Disturbances in Geospace: The Storm-Substorm Relationship, ed. by A. Surjalal Sharma, Y. Kamide, G.S. Lakhina. Washington DC American Geophysical Union Geophysical Monograph Series, vol. 142 (2003), p. 23. doi:10.1029/142GM03

    Chapter  Google Scholar 

  • B.T. Tsurutani, W.D. Gonzalez, X.-Y. Zhou, R.P. Lepping, V. Bothmer, Properties of slow magnetic clouds. J. Atmos. Sol.-Terr. Phys. 66, 147–151 (2004). doi:10.1016/j.jastp.2003.09.007

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, W.D. Gonzalez, A.L.C. Gonzalez, F.L. Guarnieri, N. Gopalswamy, M. Grande, Y. Kamide, Y. Kasahara, G. Lu, I. Mann, R. McPherron, F. Soraas, V. Vasyliunas, Corotating solar wind streams and recurrent geomagnetic activity: a review. J. Geophys. Res. Space Phys. 111, 0701 (2006). doi:10.1029/2005JA011273

    Google Scholar 

  • B.T. Tsurutani, R. Hajra, E. Echer, J.W. Gjerloev, Extremely intense (\(\mbox{SML} \leq- 2500~\mbox{nT}\)) substorms: isolated events that are externally triggered? Ann. Geophys. 33, 519–524 (2015). doi:10.5194/angeo-33-519-2015

    Article  ADS  Google Scholar 

  • L. Turc, D. Fontaine, P. Savoini, R. Modolo, 3D hybrid simulations of the interaction of a magnetic cloud with a bow shock. J. Geophys. Res. Space Phys. 120, 6133–6151 (2015). doi:10.1002/2015JA021318

    Article  ADS  Google Scholar 

  • L. Turc, C.P. Escoubet, D. Fontaine, E.K.J. Kilpua, S. Enestam, Cone angle control of the interaction of magnetic clouds with the Earth’s bow shock. Geophys. Res. Lett. 43, 4781–4789 (2016). doi:10.1002/2016GL068818

    Article  ADS  Google Scholar 

  • N.E. Turner, E.J. Mitchell, D.J. Knipp, B.A. Emery, Energetics of magnetic storms driven by corotating interaction regions: a study of geoeffectiveness, in Recurrent Magnetic Storms: Corotating Solar Wind, ed. by R. McPherron, W. Gonzalez, G. Lu, H.A. José, S. Natchimuthukonar Gopalswamy. Geophysical Monograph Series, vol. 167 (2006, American Geophysical Union, Washington), p. 113. doi:10.1029/167GM11

    Chapter  Google Scholar 

  • N.E. Turner, W.D. Cramer, S.K. Earles, B.A. Emery, Geoefficiency and energy partitioning in CIR-driven and CME-driven storms. J. Atmos. Sol.-Terr. Phys. 71, 1023–1031 (2009). doi:10.1016/j.jastp.2009.02.005

    Article  ADS  Google Scholar 

  • M. Vandas, S. Fischer, M. Dryer, Z. Smith, T. Detman, A. Geranios, MHD simulation of an interaction of a shock wave with a magnetic cloud. J. Geophys. Res. 102, 22295–22300 (1997). doi:10.1029/97JA01675

    Article  ADS  Google Scholar 

  • V.M. Vasyliunas, Theoretical models of magnetic field line merging. I. Rev. Geophys. Space Phys. 13, 303–336 (1975). doi:10.1029/RG013i001p00303

    Article  ADS  Google Scholar 

  • R. von Steiger, Space physics—grand challenges for the 21st century. Front. Phys. 1, 6 (2013). doi:10.3389/fphy.2013.00006

    Google Scholar 

  • R. von Steiger, T.H. Zurbuchen, A. Kilchenmann, Latitude distribution of interplanetary coronal mass ejections during solar maximum, in Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere, ed. by B. Fleck, T.H. Zurbuchen, H. Lacoste. ESA Special Publication, vol. 592 (2005), p. 317

    Google Scholar 

  • M.-T. Walach, S.E. Milan, Are steady magnetospheric convection events prolonged substorms? J. Geophys. Res. Space Phys. 120, 1751–1758 (2015). doi:10.1002/2014JA020631

    Article  ADS  Google Scholar 

  • B.M. Walsh, D.G. Sibeck, Y. Wang, D.H. Fairfield, Dawn-dusk asymmetries in the Earth’s magnetosheath. J. Geophys. Res. Space Phys. 117, 12211 (2012). doi:10.1029/2012JA018240

    ADS  Google Scholar 

  • Y.M. Wang, P.Z. Ye, S. Wang, G.P. Zhou, J.X. Wang, A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000. J. Geophys. Res. Space Phys. 107, 1340 (2002). doi:10.1029/2002JA009244

    Article  ADS  Google Scholar 

  • Y.M. Wang, P.Z. Ye, S. Wang, Multiple magnetic clouds: several examples during March–April 2001. J. Geophys. Res. Space Phys. 108, 1370 (2003). doi:10.1029/2003JA009850

    Article  ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr., N.B. Rich, Coronal pseudostreamers. Astrophys. J. 658, 1340–1348 (2007). doi:10.1086/511416

    Article  ADS  Google Scholar 

  • C. Wang, J.B. Liu, H. Li, Z.H. Huang, J.D. Richardson, J.R. Kan, Geospace magnetic field responses to interplanetary shocks. J. Geophys. Res. Space Phys. 114, 05211 (2009). doi:10.1029/2008JA013794

    Article  ADS  Google Scholar 

  • Y. Wang, Q. Zhang, J. Liu, C. Shen, F. Shen, Z. Yang, T. Zic, B. Vrsnak, D.F. Webb, R. Liu, S. Wang, J. Zhang, Q. Hu, B. Zhuang, On the propagation of a geoeffective coronal mass ejection during 15–17 March 2015. J. Geophys. Res. Space Phys. 121, 7423–7434 (2016). doi:10.1002/2016JA022924

    Article  ADS  Google Scholar 

  • D.F. Webb, T.A. Howard, Coronal mass ejections: observations. Living Rev. Sol. Phys. 9, 3 (2012). doi:10.1007/lrsp-2012-3. http://www.livingreviews.org/lrsp-2012-3

    Article  ADS  Google Scholar 

  • D.F. Webb, E.W. Cliver, N.U. Crooker, O.C.S. Cry, B.J. Thompson, Relationship of halo coronal mass ejections, magnetic clouds, and magnetic storms. J. Geophys. Res. 105, 7491–7508 (2000). doi:10.1029/1999JA000275

    Article  ADS  Google Scholar 

  • D.F. Webb, C. Möstl, B.V. Jackson, M.M. Bisi, T.A. Howard, T. Mulligan, E.A. Jensen, L.K. Jian, J.A. Davies, C.A. de Koning, Y. Liu, M. Temmer, J.M. Clover, C.J. Farrugia, R.A. Harrison, N. Nitta, D. Odstrcil, S.J. Tappin, H.-S. Yu, Heliospheric imaging of 3D density structures during the multiple coronal mass ejections of late July to early August 2010. Sol. Phys. 285, 317–348 (2013). doi:10.1007/s11207-013-0260-5

    Article  ADS  Google Scholar 

  • R.F. Wimmer-Schweingruber, R. von Steiger, R. Paerli, Solar wind stream interfaces in corotating interaction regions: SWICS/Ulysses results. J. Geophys. Res. 102, 17407–17418 (1997). doi:10.1029/97JA00951

    Article  ADS  Google Scholar 

  • R.F. Wimmer-Schweingruber, N.U. Crooker, A. Balogh, V. Bothmer, R.J. Forsyth, P. Gazis, J.T. Gosling, T. Horbury, A. Kilchenmann, I.G. Richardson, J.D. Richardson, P. Riley, L. Rodriguez, R.V. Steiger, P. Wurz, T.H. Zurbuchen, Understanding interplanetary coronal mass ejection signatures. Space Sci. Rev. 123, 177–216 (2006). doi:10.1007/s11214-006-9017-x. Report of Working Group B

    Article  ADS  Google Scholar 

  • Y.Q. Xie, P.B. Zuo, X.S. Feng, Y. Zhang, Properties of solar wind dynamic pressure pulses at 1 AU during the deep minimum between solar cycles 23 and 24. Sol. Phys. 290, 1835–1849 (2015). doi:10.1007/s11207-015-0700-5

    Article  ADS  Google Scholar 

  • Y.I. Yermolaev, N.S. Nikolaeva, I.G. Lodkina, M.Y. Yermolaev, Specific interplanetary conditions for CIR-, sheath-, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis. Ann. Geophys. 28, 2177–2186 (2010). doi:10.5194/angeo-28-2177-2010

    Article  ADS  Google Scholar 

  • W. Yu, C.J. Farrugia, N. Lugaz, A.B. Galvin, E.K.J. Kilpua, H. Kucharek, C. Möstl, M. Leitner, R.B. Torbert, K.D.C. Simunac, J.G. Luhmann, A. Szabo, L.B. Wilson, K.W. Ogilvie, J.-A. Sauvaud, A statistical analysis of properties of small transients in the solar wind 2007-2009: STEREO and wind observations. J. Geophys. Res. Space Phys. 119, 689–708 (2014). doi:10.1002/2013JA019115

    Article  ADS  Google Scholar 

  • R. Zelwer, P.C.B. Fernando, S.H. Ward, Interplanetary magnetic field data and corresponding geomagnetic effects for the storm of October 7, 1962. J. Geophys. Res. 72, 3471–3482 (1967). doi:10.1029/JZ072i013p03471

    Article  ADS  Google Scholar 

  • J. Zhang, I.G. Richardson, D.F. Webb, N. Gopalswamy, E. Huttunen, J.C. Kasper, N.V. Nitta, W. Poomvises, B.J. Thompson, C.-C. Wu, S. Yashiro, A.N. Zhukov, Solar and interplanetary sources of major geomagnetic storms (\(\mbox{Dst} \leq -100~\mbox{nT}\)) during 1996–2005. J. Geophys. Res. Space Phys. 112, 10102 (2007). doi:10.1029/2007JA012321

    Article  ADS  Google Scholar 

  • Y. Zhang, W. Sun, X.S. Feng, C.S. Deehr, C.D. Fry, M. Dryer, Statistical analysis of corotating interaction regions and their geoeffectiveness during solar cycle 23. J. Geophys. Res. Space Phys. 113, 08106 (2008). doi:10.1029/2008JA013095

    Article  ADS  Google Scholar 

  • H. Zhang, D.G. Sibeck, Q.-G. Zong, N. Omidi, D. Turner, L.B.N. Clausen, Spontaneous hot flow anomalies at quasi-parallel shocks: 1. observations. J. Geophys. Res. Space Phys. 118, 3357–3363 (2013). doi:10.1002/jgra.50376

    Article  ADS  Google Scholar 

  • J.J. Zhang, C. Wang, T.R. Sun, C.M. Liu, K.R. Wang, GIC due to storm sudden commencement in low-latitude high-voltage power network in China: observation and simulation. Space Weather 13, 643–655 (2015). doi:10.1002/2015SW001263

    Article  ADS  Google Scholar 

  • L. Zhao, T.H. Zurbuchen, L.A. Fisk, Global distribution of the solar wind during solar cycle 23: ACE observations. Geophys. Res. Lett. 36, 14104 (2009). doi:10.1029/2009GL039181

    Article  ADS  Google Scholar 

  • P. Zuo, X. Feng, Y. Xie, Y. Wang, X. Xu, A statistical survey of dynamic pressure pulses in the solar wind based on WIND observations. Astrophys. J. 808, 83 (2015). doi:10.1088/0004-637X/808/1/83

    Article  ADS  Google Scholar 

  • T.H. Zurbuchen, I.G. Richardson, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31–43 (2006). doi:10.1007/s11214-006-9010-4

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Y. D. Liu was supported by the Recruitment Program of Global Experts of China, NSFC under grant 41374173 and the Specialized Research Fund for State Key Laboratories of China. EK acknowledges Academy of Finland project 1267087, UH three-year grant project 490162 and HELCATS project 400931. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (SolMAG 724391).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. J. Kilpua.

Additional information

The Scientific Foundation of Space Weather

Edited by Rudolf von Steiger, Daniel Baker, André Balogh, Tamás Gombosi, Hannu Koskinen and Astrid Veronig

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilpua, E.K.J., Balogh, A., von Steiger, R. et al. Geoeffective Properties of Solar Transients and Stream Interaction Regions. Space Sci Rev 212, 1271–1314 (2017). https://doi.org/10.1007/s11214-017-0411-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0411-3

Keywords

Navigation