Skip to main content
Log in

On Modeling ICME Cross-Sections as Static MHD Columns

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Solar coronal mass ejections are well-known to expand as they propagate through the heliosphere. Despite this, their cross-sections are usually modeled as static plasma columns within the magnetohydrodynamics (MHD) framework. We test the validity of this approach using in-situ plasma data from 151 magnetic clouds (MCs) observed by the WIND spacecraft and 45 observed by the Helios spacecraft. We find that the most probable cross-section expansion speeds for the WIND events are only \(\approx 0.06\) times the Alfvén speed inside the MCs, while the most probable cross-section expansion speeds for the Helios events is \(\approx 0.03\). MC cross-sections can thus be considered to be nearly static over an Alfvén crossing timescale. Using estimates of electrical conductivity arising from Coulomb collisions, we find that the Lundquist number inside MCs is high (\(\approx 10^{13}\)), suggesting that the MHD description is well justified. The Joule heating rates using our conductivity estimates are several orders of magnitude lower than the requirement for plasma heating inside MCs near the Earth. While the (low) heating rates we compute are consistent with the MHD description, the discrepancy with the heating requirement points to possible departures from MHD and the need for a better understanding of plasma heating in MCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bothmer, V., Schwenn, R.: 1998, The structure and origin of magnetic clouds in the solar wind. Ann. Geophys. 16, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Boyd, T.J.M., Sanderson, J.J.: 2003, The Physics of Plasmas. Cambridge University Press, Cambridge. ADS.

    Book  Google Scholar 

  • Burlaga, L.F.: 1988, Magnetic clouds and force-free fields with constant alpha. J. Geophys. Res. 93, 7217. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cargill, P.J.: 2004, On the aerodynamic drag force acting on interplanetary coronal mass ejections. Solar Phys. 221, 135. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, J., Garren, D.A.: 1993, Interplanetary magnetic clouds: topology and driving mechanism. Geophys. Res. Lett. 20, 2319. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, P.F.: 2011, Coronal mass ejections: models and their observational basis. Living Rev. Solar Phys. 8, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Choudhuri, A.R., et al.: 1998, The Physics of Fluids and Plasmas: An Introduction for Astrophysicists, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Cid, C., Hidalgo, M.A., Nieves-Chinchilla, T., Sequeiros, J., Viñas, A.F.: 2002, Plasma and magnetic field inside magnetic clouds: a global study. Solar Phys. 207, 187. DOI. ADS.

    Article  ADS  Google Scholar 

  • Di Matteo, S., Viall, N.M., Kepko, L., Wallace, S., Arge, C.N., MacNeice, P.: 2019, Helios observations of quasiperiodic density structures in the slow solar wind at 0.3, 0.4, and 0.6 AU. J. Geophys. Res. (Space Phys.) 124, 837. DOI. ADS.

    Article  ADS  Google Scholar 

  • Farrugia, C.J., Lugaz, N., Vasquez, B.J., Wilson, L.B., Yu, W., Paulson, K., Torbert, R.B., Gratton, F.T.: 2020, A study of a magnetic cloud propagating through large-amplitude Alfvén waves. J. Geophys. Res. (Space Phys.) 125, e27638. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gulisano, A.M., Démoulin, P., Dasso, S., Ruiz, M.E., Marsch, E.: 2010, Global and local expansion of magnetic clouds in the inner heliosphere. Astron. Astrophys. 509, A39. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hidalgo, M.A., Cid, C., Vinas, A.F., Sequeiros, J.: 2002, A non-force-free approach to the topology of magnetic clouds in the solar wind. J. Geophys. Res. (Space Phys.) 107, 1002. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hu, Q., Sonnerup, B.U.Ö.: 2002, Reconstruction of magnetic clouds in the solar wind: orientations and configurations. J. Geophys. Res. (Space Phys.) 107, 1142. DOI. ADS.

    Article  ADS  Google Scholar 

  • Huba, J.D.: 2013, NRL PLASMA FORMULARY Supported by The Office of Naval Research, Naval Research Laboratory, Washington, DC, 1. ISBN 9781234126070. wwwppd.nrl.navy.mil/nrlformulary/.

  • Husidic, E., Lazar, M., Fichtner, H., Scherer, K., Poedts, S.: 2021, Transport coefficients enhanced by suprathermal particles in nonequilibrium heliospheric plasmas. Astron. Astrophys. 654, A99. DOI. ADS.

    Article  ADS  Google Scholar 

  • Isavnin, A., Kilpua, E.K.J., Koskinen, H.E.J.: 2011, Grad-Shafranov reconstruction of magnetic clouds: overview and improvements. Solar Phys. 273, 205. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ji, H., Yamada, M., Hsu, S., Kulsrud, R.: 1998, Experimental test of the sweet-Parker model of magnetic reconnection. Phys. Rev. Lett. 80, 3256. DOI. ADS.

    Article  ADS  Google Scholar 

  • Klein, L.W., Burlaga, L.F.: 1982, Interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 87, 613. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kumar, A., Rust, D.M.: 1996, Interplanetary magnetic clouds, helicity conservation, and current-core flux-ropes. J. Geophys. Res. 101, 15667. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lepping, R.P., Jones, J.A., Burlaga, L.F.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 95, 11957. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, Y., Richardson, J.D., Belcher, J.W., Kasper, J.C., Elliott, H.A.: 2006, Thermodynamic structure of collision-dominated expanding plasma: heating of interplanetary coronal mass ejections. J. Geophys. Res. (Space Phys.) 111, A01102. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lugaz, N., Farrugia, C.J., Winslow, R.M., Small, C.R., Manion, T., Savani, N.: 2017, Importance of CME radial expansion on the ability of slow CMEs to drive shocks. In: AGU Fall Meeting Abstracts 2017, SH51E. ADS.

    Google Scholar 

  • Lugaz, N., Salman, T.M., Winslow, R.M., Al-Haddad, N., Farrugia, C.J., Zhuang, B., Galvin, A.B.: 2020, Inconsistencies between local and global measures of CME radial expansion as revealed by spacecraft conjunctions. Astrophys. J. 899, 119. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lundquist, S.: 1951, On the stability of magneto-hydrostatic fields. Phys. Rev. 83, 307. DOI. ADS.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Möstl, C., Farrugia, C.J., Biernat, H.K., Leitner, M., Kilpua, E.K.J., Galvin, A.B., Luhmann, J.G.: 2009, Optimized grad - shafranov reconstruction of a magnetic cloud using STEREO- wind observations. Solar Phys. 256, 427. DOI. ADS.

    Article  ADS  Google Scholar 

  • Murphy, N.A., Raymond, J.C., Korreck, K.E.: 2011, Plasma heating during a coronal mass ejection observed by the solar and heliospheric observatory. Astrophys. J. 735, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Viñas, A.F.: 2008, Solar wind electron distribution functions inside magnetic clouds. J. Geophys. Res. (Space Phys.) 113, A02105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Linton, M.G., Hidalgo, M.A., Vourlidas, A., Savani, N.P., Szabo, A., Farrugia, C., Yu, W.: 2016, A circular-cylindrical flux-rope analytical model for magnetic clouds. Astrophys. J. 823, 27. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Linton, M.G., Hidalgo, M.A., Vourlidas, A.: 2018a, Elliptic-cylindrical analytical flux rope model for magnetic clouds. Astrophys. J. 861, 139. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Vourlidas, A., Raymond, J.C., Linton, M.G., Al-haddad, N., Savani, N.P., Szabo, A., Hidalgo, M.A.: 2018b, Understanding the internal magnetic field configurations of ICMEs using more than 20 years of wind observations. Solar Phys. 293, 25. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Jian, L.K., Balmaceda, L., Vourlidas, A., dos Santos, L.F.G., Szabo, A.: 2019, Unraveling the internal magnetic field structure of the Earth-directed interplanetary coronal mass ejections during 1995 – 2015. Solar Phys. 294, 89. DOI. ADS.

    Article  ADS  Google Scholar 

  • Osherovich, V.A., Farrugia, C.J., Burlaga, L.F., Lepping, R.P., Fainberg, J., Stone, R.G.: 1993, Polytropic relationship in interplanetary magnetic clouds. J. Geophys. Res. 98, 15331. DOI. ADS.

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys. 264, 189. DOI. ADS.

    Article  ADS  Google Scholar 

  • Richardson, I.G., Farrugia, C.J., Cane, H.V.: 1997, A statistical study of the behavior of the electron temperature in ejecta. J. Geophys. Res. 102, 4691. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sachdeva, N., Subramanian, P., Vourlidas, A., Bothmer, V.: 2017, CME dynamics using STEREO and LASCO observations: the relative importance of Lorentz forces and solar wind drag. Solar Phys. 292, 118. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scolini, C., Rodriguez, L., Mierla, M., Pomoell, J., Poedts, S.: 2019, Observation-based modelling of magnetised coronal mass ejections with EUHFORIA. Astron. Astrophys. 626, A122. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sturrock, P.A.: 1994, Plasma Physics, an Introduction to the Theory of Astrophysical, Geophysical and Laboratory Plasmas. Cambridge University Press, Cambridge. ADS.

    Book  Google Scholar 

  • Subramanian, P., Vourlidas, A.: 2009, Driving currents for flux rope coronal mass ejections. Astrophys. J. 693, 1219. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vandas, M., Geranios, A., Romashets, E.: 2009, On expansion of magnetic clouds in the solar wind. Astrophys. Space Sci. Trans. 5, 35. DOI. ADS.

    Article  ADS  Google Scholar 

  • Verma, M.K.: 1996, Nonclassical viscosity and resistivity of the solar wind plasma. J. Geophys. Res. 101, 27543. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vršnak, B., Amerstorfer, T., Dumbović, M., Leitner, M., Veronig, A.M., Temmer, M., Möstl, C., Amerstorfer, U.V., Farrugia, C.J., Galvin, A.B.: 2019, Heliospheric evolution of magnetic clouds. Astrophys. J. 877, 77. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wilson, M.L., Raymond, J.C., Lepri, S.T., Lionello, R., Murphy, N.A., Reeves, K.K., Shen, C.: 2022, Constraining the CME Core Heating and Energy budget with SOHO/UVCS. Astrophys. J. 927(1), 27. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (Dst <=-100 nT) during 1996-2005. J. Geophys. Res. (Space Phys.) 112, A10102. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge the reviewer for constructive criticism that helped improve the manuscript. DB acknowledges a PhD studentship from the Indian Institute of Science Education and Research, Pune. DB also acknowledges the NAMASTE+ programme (funded by DAAD) and the ICASEC for providing the scholarship during his visit to Georg-August Universität Göttingen, Göttingen, Germany. DB is thankful to Dr. Niclas Mrotzek for his help and valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debesh Bhattacharjee.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Data Tables

Appendix A: Data Tables

1.1 A.1 Events from the WIND ICME Catalogue

1.2 A.2 Events from the Helios Observation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, D., Subramanian, P., Bothmer, V. et al. On Modeling ICME Cross-Sections as Static MHD Columns. Sol Phys 297, 45 (2022). https://doi.org/10.1007/s11207-022-01982-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-01982-x

Keywords

Navigation