Skip to main content
Log in

VLA Measurements of Faraday Rotation Through a Coronal Mass Ejection Using Multiple Lines of Sight

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Coronal mass ejections (CMEs) are large eruptions of magnetized plasma from the Sun that play an important role in space weather. The key to understanding the fundamental physics of a CME is measurement of the plasma properties within heliocentric distances of \(< 20~\mathrm{R}_{\odot }\). Faraday rotation, a radioastronomical propagation measurement, is an extremely valuable diagnostic for studying CMEs. Faraday rotation measurements [RM] contain information on the magnetic field in the medium causing the Faraday rotation. Recent observations of CME-induced Faraday rotation (e.g., Howard et al. in Astrophys. J. 831, 208, 2016; Kooi et al. in Solar Phys. 292, 56, 2017; Bisi et al. in EGU General Assembly Conference Abstracts, 13243, 2017) have all been restricted to a single line of sight (LOS) and, therefore, limited to providing estimates of the magnetic field strength. Modeling by Liu et al. (Astrophys. J. 665, 1439, 2007) and Jensen and Russell (Geophys. Res. Lett. 35, L02103, 2008) demonstrated that multiple LOS are necessary to recover the magnetic field strength and structure of the observed CME. We report the first successful observations of Faraday rotation through a CME using multiple lines of sight: 13 LOS across seven target radio fields. We made these radio observations using the Karl G. Jansky Very Large Array (VLA) at \(1-2\) GHz frequencies in the triggered operation mode on 31 July 2015, using a constellation of cosmic radio sources through the solar corona at heliocentric distances of \(8.2-19.5~\mathrm{R}_{\odot }\). For LOS within \(10~\mathrm{R}_{\odot }\), the CME’s contribution to the measured RM was \(\approx 0\) to −20 rad m−2, a significant enhancement over the coronal contribution. We assumed a force-free flux-rope structure for the CME’s magnetic field and explored three separate models for the CME’s plasma density: constant density, thin shell, and thick shell. The plasma densities and axial magnetic field strengths for the three models ranged over \(5.4-6.4\times 10^{3}\) cm−3 and \(26-35\) mG, respectively. Further, using all 13 LOS, we successfully determined the CME’s orientation and helicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Banaszkiewicz, M., Axford, W.I., McKenzie, J.F.: 1998, An analytic solar magnetic field model. Astron. Astrophys. 337, 940. ADS.

    ADS  Google Scholar 

  • Bastian, T.S., Pick, M., Kerdraon, A., Maia, D., Vourlidas, A.: 2001, The coronal mass ejection of 1998 April 20: direct imaging at radio wavelengths. Astrophys. J. Lett. 558, L65. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bird, M.K., Schruefer, E., Volland, H., Sieber, W.: 1980, Coronal Faraday rotation during solar occultation of PSR0525 + 21. Nature 283, 459. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bird, M.K., Volland, H., Howard, R.A., Koomen, M.J., Michels, D.J., Sheeley, N.R. Jr., Amstrong, J.W., Seidel, B.L., Stelzried, C.T., Woo, R.: 1985, White-light and radio sounding observations of coronal transients. Solar Phys. 98, 341. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bisi, M.M., Jensen, E., Sobey, C., Fallows, R., Jackson, B., Barnes, D., Giunta, A., Hick, P., Eftekhari, T., Yu, H.-S., Odstrcil, D., Tokumaru, M., Wood, B.: 2017, Observations and analyses of heliospheric Faraday rotation of a Coronal Mass Ejection (CME) using the LOw frequency ARray (LOFAR) and space-based imaging techniques. In: EGU General Assembly Conference Abstracts, 13243. ADS.

    Google Scholar 

  • Bougeret, J.-L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, Waves: the radio and plasma wave investigation on the wind spacecraft. Space Sci. Rev. 71, 231. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cairns, I.H., Knock, S.A., Robinson, P.A., Kuncic, Z.: 2003, Type II solar radio bursts: theory and space weather implications. Space Sci. Rev. 107, 27. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cannon, A.R., Stelzried, C.T., Ohlson, J.E.: 1973, Faraday rotation observations during the 1970 Pioneer 9 solar occultation. In: Deep Space Network Progress Report 16, 87. ADS.

    Google Scholar 

  • Chrysaphi, N., Kontar, E.P., Holman, G.D., Temmer, M.: 2018, CME-driven shock and type II solar radio burst band splitting. Astrophys. J. 868, 79. DOI. ADS.

    Article  ADS  Google Scholar 

  • Colaninno, R.C., Vourlidas, A.: 2009, First determination of the true mass of coronal mass ejections: a novel approach to using the two STEREO viewpoints. Astrophys. J. 698, 852. DOI. ADS.

    Article  ADS  Google Scholar 

  • Colaninno, R.C., Vourlidas, A.: 2015, Using multiple-viewpoint observations to determine the interaction of three coronal mass ejections observed on 2012 March 5. Astrophys. J. 815, 70. DOI. ADS.

    Article  ADS  Google Scholar 

  • Condon, J.J., Cotton, W.D., Greisen, E.W., Yin, Q.F., Perley, R.A., Taylor, G.B., Broderick, J.J.: 1998, The NRAO VLA sky survey. Astron. J. 115, 1693. DOI. ADS.

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys. 162, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gibson, S.E., Fludra, A., Bagenal, F., Biesecker, D., del Zanna, G., Bromage, B.: 1999, Solar minimum streamer densities and temperatures using Whole Sun Month coordinated data sets. J. Geophys. Res. 104, 9691. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S.: 2011, The strength and radial profile of the coronal magnetic field from the standoff distance of a coronal mass ejection-driven shock. Astrophys. J. Lett. 736, L17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: 2009, The SOHO/LASCO CME catalog. Earth Moon Planets 104, 295. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gosling, J.T., McComas, D.J., Phillips, J.L., Bame, S.J.: 1991, Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res. 96, 7831. DOI. ADS.

    Article  ADS  Google Scholar 

  • Guhathakurta, M., Fludra, A., Gibson, S.E., Biesecker, D., Fisher, R.: 1999, Physical properties of a coronal hole from a coronal diagnostic spectrometer, Mauna Loa Coronagraph, and LASCO observations during the Whole Sun Month. J. Geophys. Res. 104, 9801. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gurnett, D.A., Bhattacharjee, A.: 2006, Introduction to Plasma Physics, Cambridge University, New York.

    MATH  Google Scholar 

  • Hess, P., Rouillard, A.P., Kouloumvakos, A., Liewer, P.C., Zhang, J., Dhakal, S., Stenborg, G., Colaninno, R.C., Howard, R.A.: 2020, WISPR imaging of a pristine CME. Astrophys. J. Suppl. 246, 25. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hollweg, J.V., Bird, M.K., Volland, H., Edenhofer, P., Stelzried, C.T., Seidel, B.L.: 1982, Possible evidence for coronal Alfven waves. J. Geophys. Res. 87, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, T.A., Stovall, K., Dowell, J., Taylor, G.B., White, S.M.: 2016, Measuring the magnetic field of coronal mass ejections near the Sun using pulsars. Astrophys. J. 831, 208. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, R.A., Vourlidas, A., Bothmer, V., Colaninno, R.C., DeForest, C.E., Gallagher, B., Hall, J.R., Hess, P., Higginson, A.K., Korendyke, C.M., Kouloumvakos, A., Lamy, P.L., Liewer, P.C., Linker, J., Linton, M., Penteado, P., Plunkett, S.P., Poirier, N., Raouafi, N.E., Rich, N., Rochus, P., Rouillard, A.P., Socker, D.G., Stenborg, G., Thernisien, A.F., Viall, N.M.: 2019, Near-Sun observations of an F-corona decrease and K-corona fine structure. Nature 576, 232. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ingleby, L.D., Spangler, S.R., Whiting, C.A.: 2007, Probing the large-scale plasma structure of the solar corona with Faraday rotation measurements. Astrophys. J. 668, 520. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jensen, E.A., Russell, C.T.: 2008, Faraday rotation observations of CMEs. Geophys. Res. Lett. 35, L02103. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jensen, E.A., Bisi, M.M., Breen, A.R., Heiles, C., Minter, T., Vilas, F.: 2013a, Measurements of Faraday rotation through the solar corona during the 2009 solar minimum with the MESSENGER spacecraft. Solar Phys. 285, 83. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jensen, E.A., Nolan, M., Bisi, M.M., Chashei, I., Vilas, F.: 2013b, MESSENGER observations of magnetohydrodynamic waves in the solar corona from Faraday rotation. Solar Phys. 285, 71. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev. 136, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kooi, J.E.: 2016, Very Large Array Faraday Rotation Studies of the Coronal Plasma. PhD thesis, University of Iowa.

  • Kooi, J.E., Kaplan, M.E.: 2020, Modeling differential Faraday rotation in the solar corona. Solar Phys. 295, 114. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kooi, J.E., Fischer, P.D., Buffo, J.J., Spangler, S.R.: 2014, Measurements of coronal Faraday rotation at 4.6 R . Astrophys. J. 784, 68. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kooi, J.E., Fischer, P.D., Buffo, J.J., Spangler, S.R.: 2017, VLA measurements of Faraday rotation through coronal mass ejections. Solar Phys. 292, 56. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kumari, A., Ramesh, R., Kathiravan, C., Wang, T.J.: 2017, Strength of the solar coronal magnetic field – a comparison of independent estimates using contemporaneous radio and white-light observations. Solar Phys. 292, 161. DOI. ADS.

    Article  ADS  Google Scholar 

  • Le Chat, G., Kasper, J.C., Cohen, O., Spangler, S.R.: 2014, Diagnostics of the solar corona from comparison between Faraday rotation measurements and magnetohydrodynamic simulations. Astrophys. J. 789, 163. DOI. ADS.

    Article  ADS  Google Scholar 

  • Leblanc, Y., Dulk, G.A., Bougeret, J.-L.: 1998, Tracing the electron density from the corona to 1au. Solar Phys. 183, 165. DOI. ADS.

    Article  ADS  Google Scholar 

  • Levy, G.S., Sato, T., Seidel, B.L., Stelzried, C.T., Ohlson, J.E., Rusch, W.V.T.: 1969, Pioneer 6: measurement of transient Faraday rotation phenomena observed during solar occultation. Science 166, 596. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, Y., Manchester, W.B. IV, Kasper, J.C., Richardson, J.D., Belcher, J.W.: 2007, Determining the magnetic field orientation of coronal mass ejections from Faraday rotation. Astrophys. J. 665, 1439. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mahrous, A., Alielden, K., Vršnak, B., Youssef, M.: 2018, Type II solar radio burst band-splitting: measure of coronal magnetic field strength. J. Atmos. Solar-Terr. Phys. 172, 75. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mancuso, S., Garzelli, M.V.: 2013, Radial profile of the inner heliospheric magnetic field as deduced from Faraday rotation observations. Astron. Astrophys. 553, A100. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mancuso, S., Spangler, S.R.: 1999, Coronal Faraday rotation observations: measurements and limits on plasma inhomogeneities. Astrophys. J. 525, 195. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mancuso, S., Spangler, S.R.: 2000, Faraday rotation and models for the plasma structure of the solar corona. Astrophys. J. 539, 480. DOI. ADS.

    Article  ADS  Google Scholar 

  • McMullin, J.P., Waters, B., Schiebel, D., Young, W., Golap, K.: 2007, CASA architecture and applications. In: Shaw, R.A., Hill, F., Bell, D.J. (eds.) Astronomical Data Analysis Software and Systems XVI, CS-376, Astron. Soc. Pacific, San Francisco, 127. ADS.

    Google Scholar 

  • Mierla, M., Inhester, B., Antunes, A., Boursier, Y., Byrne, J.P., Colaninno, R., Davila, J., de Koning, C.A., Gallagher, P.T., Gissot, S., Howard, R.A., Howard, T.A., Kramar, M., Lamy, P., Liewer, P.C., Maloney, S., Marqué, C., McAteer, R.T.J., Moran, T., Rodriguez, L., Srivastava, N., St. Cyr, O.C., Stenborg, G., Temmer, M., Thernisien, A., Vourlidas, A., West, M.J., Wood, B.E., Zhukov, A.N.: 2010, On the 3-D reconstruction of coronal mass ejections using coronagraph data. Ann. Geophys. 28, 203. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mondal, S., Oberoi, D., Vourlidas, A.: 2020, Estimation of the physical parameters of a CME at high coronal heights using low-frequency radio observations. Astrophys. J. 893, 28. DOI. ADS.

    Article  ADS  Google Scholar 

  • Morrill, J.S., Howard, R.A., Vourlidas, A., Webb, D.F., Kunkel, V.: 2009, The impact of geometry on observations of CME brightness and propagation. Solar Phys. 259, 179. DOI. ADS.

    Article  ADS  Google Scholar 

  • Olmedo, O., Zhang, J., Wechsler, H., Poland, A., Borne, K.: 2008, Automatic detection and tracking of coronal mass ejections in coronagraph time series. Solar Phys. 248, 485. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ord, S.M., Johnston, S., Sarkissian, J.: 2007, The magnetic field of the solar corona from pulsar observations. Solar Phys. 245, 109. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pätzold, M., Bird, M.K., Volland, H., Levy, G.S., Seidel, B.L., Stelzried, C.T.: 1987, The mean coronal magnetic field determined from HELIOS Faraday rotation measurements. Solar Phys. 109, 91. DOI. ADS.

    Article  ADS  Google Scholar 

  • Poomvises, W., Gopalswamy, N., Yashiro, S., Kwon, R.-Y., Olmedo, O.: 2012, Determination of the heliospheric radial magnetic field from the standoff distance of a CME-driven shock observed by the STEREO spacecraft. Astrophys. J. 758, 118. DOI. ADS.

    Article  ADS  Google Scholar 

  • Robbrecht, E., Berghmans, D., Van der Linden, R.A.M.: 2009, Automated LASCO CME catalog for Solar Cycle 23: are CMEs scale invariant? Astrophys. J. 691, 1222. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sakurai, T., Spangler, S.R.: 1994a, The study of coronal plasma structures and fluctuations with Faraday rotation measurements. Astrophys. J. 434, 773. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sakurai, T., Spangler, S.R.: 1994b, Use of the very large array for measurement of time variable Faraday rotation. Radio Sci. 29, 635. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sasikumar Raja, K., Ramesh, R., Hariharan, K., Kathiravan, C., Wang, T.J.: 2014, An estimate of the magnetic field strength associated with a solar coronal mass ejection from low frequency radio observations. Astrophys. J. 796, 56. DOI. ADS.

    Article  ADS  Google Scholar 

  • Spangler, S.R.: 2005, The strength and structure of the coronal magnetic field. Space Sci. Rev. 121, 189. DOI. ADS.

    Article  ADS  Google Scholar 

  • Spangler, S.R.: 2007, A technique for measuring electrical currents in the solar corona. Astrophys. J. 670, 841. DOI. ADS.

    Article  ADS  Google Scholar 

  • Stelzried, C.T., Levy, G.S., Sato, T., Rusch, W.V.T., Ohlson, J.E., Schatten, K.H., Wilcox, J.M.: 1970, The quasi-stationary coronal magnetic field and electron density as determined from a Faraday rotation experiment. Solar Phys. 14, 440. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vourlidas, A., Howard, R.A., Esfandiari, E., Patsourakos, S., Yashiro, S., Michalek, G.: 2010, Comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle. Astrophys. J. 722, 1522. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wood, B.E., Tun-Beltran, S., Kooi, J.E., Polisensky, E.J., Nieves-Chinchilla, T.: 2020, Inferences about the magnetic field structure of a CME with both in situ and Faraday rotation constraints. Astrophys. J. 896, 99. DOI. ADS.

    Article  ADS  Google Scholar 

  • You, X.P., Coles, W.A., Hobbs, G.B., Manchester, R.N.: 2012, Measurement of the electron density and magnetic field of the solar wind using millisecond pulsars. Mon. Not. Roy. Astron. Soc. 422, 1160. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported at the U.S. Naval Research Laboratory by the Jerome and Isabella Karle Distinguished Scholar Fellowship program and by 6.1 base funding. Student research was supported by the Naval Research Enterprise Internship Program (NREIP), Science and Engineering Apprenticeship Program (SEAP), and NRL Research Internship Program for HBCU/ MI/TCU Undergraduates and Graduates. The Karl G. Jansky Very Large Array is an instrument of the National Radio Astronomy Observatory. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The SOHO LASCO data used here are produced by a consortium of the Naval Research Laboratory (USA), Max-Planck-Institut fuer Aeronomie (Germany), Laboratoire d’Astronomie (France), and the University of Birmingham (UK). SOHO is a project of international cooperation between ESA and NASA. The authors also thank the referee whose comments and insights improved the final article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason E. Kooi.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kooi, J.E., Ascione, M.L., Reyes-Rosa, L.V. et al. VLA Measurements of Faraday Rotation Through a Coronal Mass Ejection Using Multiple Lines of Sight. Sol Phys 296, 11 (2021). https://doi.org/10.1007/s11207-020-01755-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01755-4

Keywords

Navigation