Skip to main content
Log in

Alternative formulae for robust Weighted Total Least-Squares solutions for Errors-In-Variables models

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Weighted Total Least-Squares (WTLS) can optimally solve the issue of parameter estimation in the Errors-In-Variables (EIV) model; however, this method is relatively sensitive to outliers that may exist in the observation vector and/or the coefficient matrix. Hence, an attempt to identify/suppress those outliers is in progress and will ultimately lead to a novel robust estimation procedure similar to the one used in the Gauss-Markov model. The method can be considered as a follow-up to the WTLS solution formulated with the standard Least-Squares framework. We utilize the standardized total residuals to construct the equivalent weights, and apply the median method to obtain a robust estimator of the variance to provide good robustness in the observation and structure spaces. Moreover, a preliminary analysis for the robustness of related estimators within the EIV model is conducted, which shows that the redescending M-estimates are more robust than the monotonic ones. Finally, the efficacy of the proposed algorithm is demonstrated through two applications, i.e. 2D affine transformation and linear regression on simulated data and on real data with some assumptions. Unfortunately, the proposed algorithm may not be reliable for detecting multiple outliers. Therefore, MM-estimates within the EIV model need to be investigated in further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amiri-Simkooei A.R. and Jazaeri S., 2012. Weighted Total Least-Squares formulated by standard Least-Squares theory. J. Geod. Sci., 2, 113–124

    Article  Google Scholar 

  • Amiri-Simkooei A.R., 2013. Application of Least-Squares variance component estimation to errors-in-variables models. J. Geodesy, 87, 935–944

    Article  Google Scholar 

  • Amiri-Simkooei A.R. and Jazaeri S., 2013. Data-snooping procedure applied to Errors-In-Variables models. Stud. Geophys. Geod., 57, 426–441

    Article  Google Scholar 

  • Amiri-Simkooei A.R., Zangeneh-Nejad F. and Asgari J., 2016. On the covariance matrix of weighted Total Least-Squares estimates. J. Surv. Eng., 142, DOI: https://doi.org/10.1061/(ASCE)SU.1943-5428.0000153

  • Amiri-Simkooei A.R., 2018. Parameter estimation in 3D affine and similarity transformation: Implementation of variance component estimation. J. Geodesy, 92, 1285–1297

    Article  Google Scholar 

  • Baarda W., 1968. A Testing Procedure for Use in Geodetic Networks. Publications on Geodesy, 2(5), Netherlands Geodetic Commission, Delft, The Netherlands

  • Björck A., 1996. Numerical Methods for Least-Squares Problems. SIAM, Philadelphia, PA

    Book  Google Scholar 

  • Deming W.E., 1931. The application of least squares. Phil. Mag., 11, 146–158

    Article  Google Scholar 

  • Deming W.E., 1934. On the application of least squares — II. Phil. Mag., 17, 804–829

    Article  Google Scholar 

  • Brown M., 1982. Robust line estimation with errors in both variables. J. Am. Stat. Assoc., 77, 71–79

    Article  Google Scholar 

  • Fang X., 2011. Weighted Total Least-Squares Solution for Application in Geodesy. Ph.D. Thesis. Publ. No. 294, Institute of Geodesy, Leibniz University Hanover, Hanover, Germany

    Google Scholar 

  • Fang X., 2014. A structured and constrained Total Least-Squares solution with cross-covariances. Stud. Geophys. Geod., 58, 1–16

    Article  Google Scholar 

  • Fekri M. and Ruiz-Gazen A., 2004. Robust weighted orthogonal regression in the Errors-In-Variables model. J. Multivari. Anal., 88, 89–108

    Article  Google Scholar 

  • Fuller W.A., 1987. Measurement Error Models. Wiley, New York, NY

    Book  Google Scholar 

  • Golub G.H. and Van Loan C.F., 1980. An analysis of the Total Least-Squares problem. SIAM J. Numer. Anal., 17, 883–893

    Article  Google Scholar 

  • Gong X. and Li Z., 2017. A robust weighted Total Least-Squares solution with Lagrange multipliers. Surv. Rev., 49, 176–185

    Article  Google Scholar 

  • Hampel F.R., Ronchetti E.M., Rousseeuw P.J. and Stahel W.A., 1986. Robust Statistics: The Approach Based on Influence Functions. Wiley, New York, NY

    Google Scholar 

  • He X. and Liang H., 2000. Quantile regression estimates for a class of linear and partially linear Errors-In-Variables models. Stat. Sinica, 10, 129–140

    Google Scholar 

  • Helmert F.R., 1907. Adjustment Computations by the Method of Least Squares. 2nd Edition. Teubner, Leipzig, Germany (in German)

    Google Scholar 

  • Huber P.J. and Ronchetti E.M., 2009. Robust Statistics. 2nd Edition. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Jazaeri S., Amiri-Simkooei A.R. and Sharifi M.A., 2014. Iterative algorithm for weighted Total Least-Squares adjustment. Surv. Rev., 46, 19–27

    Article  Google Scholar 

  • Jin Y., Tong X., Li L., Zhang S. and Liu S., 2015. Total least L1- and L2-norm estimations of a coordinate transformation model with a structured parameter matrix. Stud. Geophys. Geod., 59, 345–365

    Article  Google Scholar 

  • Jung K., 2007. Least trimmed squares estimator in the Errors-In-Variables model. J. Appl. Stat., 34, 331–338

    Article  Google Scholar 

  • Kelly G., 1984. The influence function in the Errors-In-Variables problem. Ann. Stat., 12, 87–100

    Article  Google Scholar 

  • Koch K.R., 2013. Robust estimation by expectation maximization algorithm. J. Geodesy, 87, 107–116

    Article  Google Scholar 

  • Krarup T., Juhl J. and Kubik K., 1980. Götterdämmerung over least squares adjustment. 14-th Congress of the International Society of Photogrammetry, 369–378 (https://www.isprs.org/proceedings/xxiii/congress/part3/369_XXIII-B3.pdf)

  • Lu J., Chen Y., Li B. and Fang X., 2014. Robust Total Least-Squares with reweighting iteration for three-dimensional similarity transformation. Surv. Rev., 46, 28–36

    Article  Google Scholar 

  • Mahboub V., 2012. On weighted Total Least-Squares for geodetic transformations. J. Geodesy, 86, 359–367

    Article  Google Scholar 

  • Mahboub V., Amiri-Simkooei A. R. and Sharifi M. A., 2013. Iteratively reweighted Total Least-Squares: A robust estimation in Errors-In-Variables models. Surv. Rev., 45, 92–99

    Google Scholar 

  • Markovsky I., Van Huffel S. and Pintelon R., 2005. Block-toeplitz/hankel structured Total Least-Squares. SIAM J. Matrix Anal. A, 26, 1083–1099

    Article  Google Scholar 

  • Maronna R.A., Martin R.D. and Yohai V.J., 2006. Robust Statistics: Theory and Methods. Wiley, Chichester, U.K.

    Book  Google Scholar 

  • Neitzel F. 2010. Generalization of Total Least-Squares on example of unweighted and weighted 2D similarity transformation. J. Geodesy, 84, 751–762

    Article  Google Scholar 

  • Peng J., 2005. The asymptotic variance-covariance matrix, Baarda test and the reliability of L1-norm estimates. J. Geodesy, 78, 668–682

    Article  Google Scholar 

  • Rousseeuw P.J. and Leroy A.M., 1987. Robust Regression and Outlier Detection. Wiley, New York, NY

    Book  Google Scholar 

  • Schaffrin B. and Felus Y.A., 2005. On Total Least-Squares adjustment with constraints. In: Sansò F. (Ed.), A Window on the Future of Geodesy. Internationa Association of Geodesy Symposia, 128, Springer, Berlin, 417–421

    Chapter  Google Scholar 

  • Schaffrin B., Lee I.P., Felus Y.A. and Choi Y.S., 2006. Total Least-Squares for geodetic straight-line and plane adjustment. Boll. Geod. Sci. Aff., 65, 141–168

    Google Scholar 

  • Schaffrin B. and Felus Y.A., 2008. On the multivariate Total least-Squares approach to empirical coordinate transformations: Three algorithms. J. Geodesy, 82, 373–383

    Article  Google Scholar 

  • Schaffrin B. and Wieser A., 2008. On weighted Total least-Squares adjustment for linear regression. J. Geodesy, 82, 415–421

    Article  Google Scholar 

  • Schaffrin B. and Snow K., 2010. Total Least-Squares regularization of Tykhonov type and an ancient racetrack in Corinth. Linear Algebra Appl., 432, 2061–2076

    Article  Google Scholar 

  • Schaffrin B. and Uzun S., 2011. Errors-in-variables for mobile mapping algorithms in the presence of outliers. Arch. Photogramm. Cartogr. Remote Sens., 22, 377–387

    Google Scholar 

  • Schaffrin B., 2015. Adjusting the Errors-In-Variables model: linearized Least-Squares vs. nonlinear Total Least-Squares. In: Sneeuw N., Novák P., Crespi M. and Sansò F. (Eds), VIII Hotine-Marussi Symposium on Mathematical Geodesy. Internationa Association of Geodesy Symposia, 142, Springer, Berlin, 301–307

    Chapter  Google Scholar 

  • Schaffrin B. and Snow K., 2020. Progress towards a rigorous error propagation for Total Least-Squares estimates. J. Appl. Geodesy, 14, 159–166

    Article  Google Scholar 

  • Shen Y., Li B. and Chen Y., 2011. An iterative solution of weighted Total Least-Squares adjustment. J. Geodesy, 85, 229–238

    Article  Google Scholar 

  • Snow K., 2012. Topics in Total Least-Squares Adjustment within the Errors-In-Variables Model: Singular Cofactor Matrices and Prior Information. PhD Thesis. School of Earth Sciences, The Ohio State University, Columbus, OH

    Google Scholar 

  • Steeb W.-H. and Yorick H., 2011. Matrix Calculus and Kronecker Product. 2nd Edition. World Scientific, Singapore

    Book  Google Scholar 

  • Tao Y.Q., Gao J.X. and Yao Y.F., 2014. TLS algorithm for GPS height fitting based on robust estimation. Surv. Rev., 46, 184–188

    Article  Google Scholar 

  • Teunissen P.J.G., 1985. The Geometry of Geodetic Inverse Linear Mapping and Nonlinear Adjustment. Publications on Geodesy, 8(1), Netherlands Geodetic Commission, Delft, The Netherlands

    Book  Google Scholar 

  • Teunissen P.J.G., 1988. The nonlinear 2D symmetric Helmert transformation: An exact nonlinear least-squares solution. Bull. Geod., 62, 1–16

    Article  Google Scholar 

  • Teunissen P.J.G., 1990. Nonlinear Least-Squares. Manus. Geod., 15, 137–150

    Google Scholar 

  • Teunissen P.J.G., 2000a. Testing Theory: An Introduction. Series on Mathematical Geodesy and Positioning, Delft University Press, Delft, The Netherlands

    Google Scholar 

  • Teunissen P.J.G., 2000b. Adjustment Theory: An Introduction. Series on Mathematical Geodesy and Positioning, Delft University Press, Delft, The Netherlands

    Google Scholar 

  • Tong X., Jin Y., Zhang S., Li L. and Liu S., 2015. Bias-corrected weighted total least-squares adjustment of condition equations. J. Surv. Eng., 141, DOI: https://doi.org/10.1061/(ASCE)SU.1943-5428.0000140

  • Wang B., Li J. and Liu C., 2016. A robust weighted Total Least-Squares algorithm and its geodetic applications. Stud. Geophys. Geod., 60, 177–194

    Article  Google Scholar 

  • Wang L. and Zhao Y., 2019. Second-order approximation function method for precision estimation of Total Least-Squares. J. Surv. Eng., 145, DOI: https://doi.org/10.1061/(ASCE)SU.1943-5428.0000266

  • Xu P., Liu J. and Shi C., 2012. Total Least-Squares adjustment in partial Errors-In-Variables models: Algorithm and statistical analysis. J. Geodesy, 86, 661–675

    Article  Google Scholar 

  • Xu P. and Liu J., 2014. Variance components in Errors-In-Variables models: Estimability, stability and bias analysis. J. Geodesy, 88, 719–734

    Article  Google Scholar 

  • Yang L., Shen Y. and Li B., 2019. M-estimation using unbiased median variance estimate. J. Geodesy, 93, 911–925

    Article  Google Scholar 

  • Yang Y., 1994. Robust estimation for dependent observations. Manus. Geod., 19, 10–17

    Google Scholar 

  • Yang Y., Song L. and Xu T., 2002. Robust estimator for correlated observations based on bifactor equivalent weights. J. Geodesy, 76, 353–358

    Article  Google Scholar 

  • Yohai V.J., 1987. High breakdown-point and high efficiency robust estimates for regression. Ann. Stat., 15, 642–656

    Article  Google Scholar 

  • Zamar R.H., 1989. Robust estimation in the Errors-In-Variables model. Biometrika, 76, 149–160

    Article  Google Scholar 

  • Zhao J., Gui Q. and Guo F., 2017. L1-norm minimization in partial Errors-In-Variables model. Acta Geod. Geophys., 52, 389–406

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge useful comments of the Associate Editor, P.J.G. Teunissen and of the anonymous reviewers, that improved the paper. This research is supported by the National Natural Science Foundation of PR China (Grant Nos 41674016 and 41904039) and the Natural Science Foundation of Jiangxi Province (Grant No. 20202BABL214055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhipeng Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Z., Sui, L. Alternative formulae for robust Weighted Total Least-Squares solutions for Errors-In-Variables models. Stud Geophys Geod 65, 105–127 (2021). https://doi.org/10.1007/s11200-019-0282-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-019-0282-z

Keywords

Navigation