Skip to main content
Log in

Empirical estimation of the power of test in outlier detection problem

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Classical outlier detection test methods such as Baarda test and Pope test are generally preferred in geodetic problems. They depend on the Least Square Estimation (LSE) and LSE is very sensitive to the variations of the model. The capacity of the LSE changes depending on the different significance level, different type of outlier, the number of outlier, magnitude of outlier, number of observations and the number of unknowns. In statistics, the power of test is the probability of rejecting the null hypothesis when the null hypothesis is false. It is a theoretical assumption and depends on the significance level α (Type I error) and β (Type II error). The different types of the outliers, such as random or non-random, affect the results of the test methods; but the power of test is the same for all different types of the outliers. In this study, empirical estimation of the power of test is presented as Mean Success Rate (MSR). The theoretical power of test and empirical MSR have been estimated for univariate model and linear model by using Baarda test; according to the obtained results, MSR can be used as empirical value of the power of test and capacity of the test models. Also, MSR reflects more realistic results than the theoretical power of test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Atkinson A.C., 1985. Plots, Transformations and Regression. Oxford University Press, Oxford, U.K.

    Google Scholar 

  • Aydin C., 2012. Power of global test in deformation analysis. J. Surv. Eng., 138, 51–56.

    Article  Google Scholar 

  • Baarda W., 1967. Statistical concepts in geodesy. Publication on Geodesy, New Series, 2(4), Netherlands Geodetic Commission, Delft, The Netherlands.

    Google Scholar 

  • Baarda W., 1968. A testing procedure for use in geodetic Networks. Publication on Geodesy, New Series, 2(5), Netherlands Geodetic Commission, Delft, The Netherlands.

    Google Scholar 

  • Chen Y.Q., Kavouras M. and Chrzanowski A., 1987. A strategy for detection of outlying observations in measurements of high precision. The Canadian Surveyor, 41, 529–540.

    Google Scholar 

  • Cook R.D. and Weisberg S., 1982. Residuals and Influence in Regression. Chapman & Hall, New York.

    Google Scholar 

  • Donoho D.L. and Huber P.J., 1983. The notion of breakdown point. In: Bickel P.J., Doksum K. and Hodges J.L. Jr. (Eds), A Festschrift for Erich Lehmann. Wadsworth, Belmont, CA, 157–184.

    Google Scholar 

  • Hadi A.S. and Simonoff J.S., 1993. Procedures for the identification of multiple outliers in linear models. J. Am. Stat. Assoc., 88, 1264–1272.

    Article  Google Scholar 

  • Hampel F., Ronchetti E., Rousseeuw P. and Stahel W., 1986. Robust Statistics: the Approach Based on Influence Functions. John Wiley and Sons, New York.

    Google Scholar 

  • Heck B., 1981. Der Einfluss einzelner Beobachtungen auf das Ergebnis einer und die Suche nach Ausreissern in den beobachtungen. Allg. Verm. Nachricht., 88, 17–34.

    Google Scholar 

  • Hekimoglu S., 1997. The finite sample breakdown points of the conventional iterative outlier detection procedures. J. Surv. Eng., 123, 15–31.

    Article  Google Scholar 

  • Hekimoglu S. and Koch K.R., 1999. How can reliability of the robust methods be measured? In: Altan M.O. and Gründige L. (Eds), Third Turkish-German Joint Geodetic Days, Volume 1. Istanbul Technical University, Istanbul, Turkey, 179–196.

    Google Scholar 

  • Hekimoglu S. and Koch K.R., 2000. How can reliability of the test for outliers be measured? Allg. Verm. Nachricht., 107, 247–254.

    Google Scholar 

  • Hekimoglu S., Erdogan B., Erenoglu R.C. and Hosbas R.G., 2011. Increasing the efficacy of the tests for outliers for geodetic networks. Acta Geod. Geophys. Hung., 46, 291–308.

    Article  Google Scholar 

  • Hekimoglu S. and Erdogan B., 2012. New median approach to define configuration weakness of deformation networks. J. Surv. Eng., 138, 101–108.

    Article  Google Scholar 

  • Huber P.J., 1981. Robust Statistics. John Wiley and Sons., New York.

    Book  Google Scholar 

  • Knight N.L., Wang J. and Rizos C., 2010. Generalised measures of reliability for multiple outliers. J. Geodesy, 84, 625–635.

    Article  Google Scholar 

  • Koch K.R., 1999. Parameter Estimation and Hypothesis Ttesting in Linear Models, 2nd Edition. Springer-Verlag, Berlin, Germany.

    Book  Google Scholar 

  • Koch K.R., 2013a. Robust estimation by expectation maximization algorithm. J. Geodesy, 87, 107–116.

    Article  Google Scholar 

  • Koch K.R., 2013b. Comparison of two robust estimations by expectation maximization algorithms with Huber’s method and outlier tests. J. Appl. Geodesy, 7, 115–123.

    Google Scholar 

  • Kok J.J., 1984. On Data Snooping and Multiple Outlier Testing. NOAA Technical Report, 30. U.S. Department of Commerce, Rockville, MD.

    Google Scholar 

  • Kuang S., 1991. Optimization and Design of Deformation Monitoring Schemes. Ph.D. Thesis. Report 157. Department of Surveying Engineering, University of New Brunswick, Fredericton, NB, Canada.

    Google Scholar 

  • Lehmann R., 2010. Normierte Verbeßserungen-wie groß ist zu groß? Allgemeine Vermessungsnachrichten, 2, 53–61 (in German.

    Google Scholar 

  • Lehmann R., 2012a. Geodätische Fehlerrechnung mit der skalenkontaminierten Normalverteilung. Allgemeine Vermessungsnachrichten, 143–149 (in German).

    Google Scholar 

  • Lehmann R., 2012b. Improved critical values for extreme normalized and studentized residuals in Gauss-Markov models. J. Geodesy, 86, 1137–1146.

    Article  Google Scholar 

  • Maronna R., Martin D. and Yohai V., 2006. Robust Statistics. John Wiley and Sons., New York.

    Google Scholar 

  • Neyman J. and Pearson E.S., 1933. On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 231, 289–337.

    Article  Google Scholar 

  • Pope A.J., 1976. The Statistics of Residuals and the Outlier Detection of Outliers. NOAA Technical Report, 65. U.S. Department of Commerce, Rockville, MD.

    Google Scholar 

  • Teunissen P.J.G., 2000. Testing Theory-an Introduction. Delft University, Delft, The Netherlands.

    Google Scholar 

  • Teunissen P.J.G., 2018. Distributional theory for the DIA method. J. Geodesy, 92, 59–80.

    Article  Google Scholar 

  • Wang J. and Chen Y.Q., 1999. Outlier detection and reliability measures for singular adjustment models. Geomat. Res. Australasia, 71, 57–72.

    Google Scholar 

  • Wang J. and Knight N.L., 2012. New outlier separability test and its application in GNSS positioning. J. Glob. Posit. Syst., 11, 46–57.

    Article  Google Scholar 

  • Yang L., Wang J., Knight N.L. and Shen Y., 2013. Outlier separability analysis with a multiple alternative hypotheses test. J. Geodesy, 87, 591–604.

    Article  Google Scholar 

  • Zaminpardaz S. and Teunissen P.J.G., 2018. DIA-datasnooping and identifiability. J. Geodesy, DOI: https://doi.org/10.1007/s00190-018-1141-3(in print).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahattin Erdogan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdogan, B., Hekimoglu, S., Durdag, U.M. et al. Empirical estimation of the power of test in outlier detection problem. Stud Geophys Geod 63, 55–70 (2019). https://doi.org/10.1007/s11200-018-1144-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-018-1144-9

Keywords

Navigation