Skip to main content
Log in

State of the Helium Atom Inside a Fullerene

  • OPTICS AND SPECTROSCOPY
  • Published:
Russian Physics Journal Aims and scope

The problem of motion of the helium atom inside the fullerene molecule at ultralow temperatures is considered. The solution of the Schrödinger equation is obtained by numerical methods using special functions. The potential energy of interaction of the fullerene particle with the helium atom is calculated by integrating the modified Lennard–Jones potential over the idealized surface of the hollow nanoparticle. As a result of calculations, zones of the most probable localization of the atomic particle in the states with (n, m, and kn) inside the C60 fullerene were determined and visualized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. A. Poteryaeva, M. A. Bubenchikov, A. M. Bubenchikov, et al., Sci. Rep., 10, 15631 (2020); DOI: https://doi.org/10.1038/s41598-020-72327-6.

    Article  ADS  Google Scholar 

  2. V. A. Poteryaeva, Vestn. Tomsk. Gos. Univ., Mat. Mekh., 65, 114–123 (2020); DOI: https://doi.org/10.17223/19988621/65/9.

    Article  MathSciNet  Google Scholar 

  3. A. M. Bubenchikov, M. A. Bubenchikov, A. V. Lun-Fu, and V. A. Ovchinnikov, Fuller., Nanotub. Carbon Nanostructures, 29, No 6, 442−445 (2021); DOI: https://doi.org/10.1080/1536383X.2020.1856817.

  4. R.-F. Peng, S.-J. Chu, Y.-M. Huang, et al., J. Mat. Chem., 19 (22), 3602 (2009); DOI: https://doi.org/10.1039/b904234b.

    Article  Google Scholar 

  5. Y. Rubin, T. Jarrosson, G.-W. Wang, et al., Angew. Chem. Int. Ed., 113 (8), 1591–1594; DOI: 10.1002/1521-3757 (20010417) 113:8 <1591:: aid-ange1591> 3.0.co; 2-v.

  6. X. Dai, Y. Meng, M. Xin, et al., Procedia Chem., 7, 528−533 (2012); DOI: https://doi.org/10.1016/j.proche.2012.10.080.

    Article  Google Scholar 

  7. L. Pang and F. Brisse, J. Phys. Chem., 97, No. 33, 8562–8563 (1993); DOI: https://doi.org/10.1021/j100135a005.

    Article  Google Scholar 

  8. Y. Morinaka, S. Sato, A. Wakamiya, et al., Nat. Commun., 4, No. 1554 (2013); DOI: https://doi.org/10.1038/ncomms2574.

  9. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, eds., Science of Fullerenes and Carbon Nanotubes, Academic Press (1996), pp. 870–917; DOI: https://doi.org/10.1016/B978-012221820-0/50020-4.

  10. S. Mamone, J. Y.-C. Chen, R. Bhattacharyya, et al., Coord. Chem. Rev., 255, Nos. 7–8, 938–948 (2011); DOI: https://doi.org/10.1016/j.ccr.2010.12.029.

    Article  Google Scholar 

  11. A. J. Horsewill, K. S. Panesar, S. Rols, et al., Phys. Rev. B, 85, No. 20 (2012); DOI: https://doi.org/10.1103/physrevb.85.205440.

  12. A. J. Horsewill, K. Goh, S. Rols , et al., Philos. Trans. A, 5, 371 (1998); DOI: https://doi.org/10.1098/rsta.2011.0627.

    Article  Google Scholar 

  13. C. Beduz, M. Carravetta, J. Y.-C. Chen, et al., Proc. Nat. Acad. Sci., 109, No. 32, 12894–12898 (2012); DOI: https://doi.org/10.1073/pnas.1210790109.

    Article  ADS  Google Scholar 

  14. Q. Zhao, F. Zhang, and H. Zhou, Sci. China Phys. Mech., 51, No. 7, 765–772 (2008); DOI: https://doi.org/10.1007/s11433-008-0077-7.

    Article  Google Scholar 

  15. O. P. Charkin, N. M. Klimenko, and D. O. Charkin, Adv. Quant. Chem., 58, 69–114 (2009); DOI: https://doi.org/10.1016/s0065-3276 (09 00707-2.

  16. R. Santamaria, J. Soullard, and R. G. Barrera, J. Low Temp. Phys., Pub. Date 2019–01–01; DOI: https://doi.org/10.1007/s10909-018-02134-x.

  17. M. A. Bubenchikov, A. M. Bubenchikov, A. V. Lun-Fu, and V. A. Ovchinnikov, Phys. Status Solidi A, 218, No. 2000174 (2021); DOI: https://doi.org/10.1002/pssa.202000174.

  18. V. A. Poteryaeva, M. A. Bubenchikov, S. Jambaa, et al., J. Phys.: Conf. Ser., 1537, No. 012008 (2019); DOI: https://doi.org/10.1088/1742-6596/1537/1/012008.

  19. V. A. Poteryaeva and M. А. Jingles, Rus.. Phys. J., 64, No. 5, 844–849 (2021).

    Article  Google Scholar 

  20. V. A. Poteryaeva, M. A. Bubenchikov, and A. Lun-Fu, AIP Conf. Proc., 2212, No. 020048 (2020); DOI: https://doi.org/10.1063/5.0000939.

  21. A. Potekaev, L. Shamanaeva, and V. Kalugina, Atmosphere, 12, No. 4, 421 (2021); DOI: https://doi.org/10.3390/atmos12040421.

  22. D. I. Blokhintsev, Fundamentals of Quantum Mechanics [in Russian], Vysshaya Shkola, Moscow (1961).

    Google Scholar 

  23. Z. Sommerfeld, Atomic Structure and Spectra, Vol. 2, State Publishing House of Technical and Theoretical Literature, Moscow (1956).

    Google Scholar 

  24. F. Uhlík, Z. Slanina, and E. Obarsawa, Fullerene Sci. Technol., 8, Nos. 4–5, 453–460 (2000); DOI: https://doi.org/10.1080/10641220009351425.

    Article  Google Scholar 

  25. G. Baitmen and A. Erdeyi, Higher Transcendental Functions, Vol. 1, Nauka, Moscow (1973).

    Google Scholar 

  26. O. V. Usenko, Interaction of molecules and atoms of gas components with carbon structures, Author’s Abstract Cand. Phys.-Math. Sci. Dissert., Tomsk State University, Tomsk (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Poteryaeva.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 156–164, January, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poteryaeva, V.A., Bubenchikov, M.A., Bubenchikov, A.M. et al. State of the Helium Atom Inside a Fullerene. Russ Phys J 65, 169–178 (2022). https://doi.org/10.1007/s11182-022-02619-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02619-z

Keywords

Navigation