Skip to main content
Log in

The Effect of Ion Irradiation (Аr+, E = 15−20 keV) on the Microstructure of the Deformed Ni – 13.9 wt.% W Alloy

  • Published:
Russian Physics Journal Aims and scope

Using X-ray diffraction analysis, the effect of Ar+ ions with an energy of 15−20 keV (at ion current densities of 100−300 μA/cm2) on the microstructure, the level of internal microstresses and the texture of cold rolled ribbons of alloy Ni – 13.9 wt.% W is studied. It is found out that short-term irradiation of 80 μm thick ribbons with a fluence of 3.1·1016 cm–2 (for 50 s) at temperatures T ≤ 370°C and T = 630°C leads to a decrease in microstresses in their entire volume, while the original texture is retained. With an increase in the fluence to 9.7·1017 cm–2 at T = 630°C, the texture changes from (220) to (200). Changes in microstresses and texture on the irradiated and non-irradiated sides of 80-μm-thick ribbons are comparable to each other, despite the fact that the projected range of Ar+ ions with an energy of 15−20 keV in the alloy is only ~7 nm. It is known that annealing of such ribbons in an oven (700°C, 30 min) does not cause their recrystallization. At 850°C, the microstresses are relieved and the texture dramatically changes from (220) to (200) both as a result of annealing in a furnace (15 s) and as a result of irradiation with a fluence of 3.2·1016 cm–2 for 17 s, but the effect of stress removal in the course of furnace annealing is 3 times lower than that of irradiation. Thus, the following facts have been established: 1) the occurrence of recrystallization processes in the alloy under study during irradiation at a temperature lower than the temperature of the onset of thermally activated recrystallization and 2) a higher rate of microstress drop (and to lower values) in the course of irradiation than during furnace annealing. This indicates a significant role of nanoscale radiation-dynamic effects at the cascade-forming irradiation of metastable media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Second-generation HTS conductors (Ed. A. Goyal) [Russian Translation edited by Prof. A.R. Kaul.], LKI, Moscow (2009).

  2. А. А. Molodyk and A. R. Kaul, Rossiyskii Khim. Zhurnal, 7, No. 6, 48 (2013).

    Google Scholar 

  3. C. Senatore, M. Alessandrini, A. Lucarelli, et al., Supercond. Sci. Technol., 27, No. 10, 103001 (2014).

    Article  ADS  Google Scholar 

  4. D. P. Norton, A. Goyal, J. D. Budai, et al., Science, 274, 755 (1996).

    Article  ADS  Google Scholar 

  5. D. P. Rodionov, I. V. Gervasyeva, and Yu. V. Khlebnikova, Textured Nickel-Alloy Substrates [in Russian], RIO UrB RAS, Ekaterinburg (2012).

    Google Scholar 

  6. A. A. Nikonov, Physics of Metals and Metallogr., 119 , No. 1, 6 (2018).

    Article  ADS  Google Scholar 

  7. Yu. V. Khlebnikova, D. P. Rodionov, I. V. Gervasyeva, et al., Physics of Metals and Metallogr., 117 , No. 11, 1129 (2016).

    Article  ADS  Google Scholar 

  8. Yu. V. Khlebnikova, D. P. Rodionov, L. Yu. Egorova, and T. R. Suaridze, Physics of Metals and Metallogr., 117 , No. 5, 500 (2017).

    Article  ADS  Google Scholar 

  9. Yu. V. Khlebnikova, T. R. Suaridze, D. P. Rodionov, et al., Physics of Metals and Metallogr., 118 , No. 10, 982 (2017).

    Article  ADS  Google Scholar 

  10. M. V. Kravtsova, V. A. Drobyshev, Yu. I. Chistov, et al., Problems of Atomic Science and Technology. Materials Technology and New Materials Series” (PAST), 76, No. 1, 62 (2014).

  11. M. S. Sungurov, V. V. Derevyanko, S. A. Leonov, et al., Pis’ma ZhTF, 40, Iss. 18, 47 (2014).

  12. A. V. Borisov, D. N. Rakov, I. M. Abdyukhanov, et al., At. Energy, 119, 326 (2016).

    Article  Google Scholar 

  13. I. A. Chernykh, Multilayer epitaxial superconductor–interlayer structures for increasing the current-conducting capacity of the second-generation ribbons. Author’s abstract of Cand. Phys.-Math. Sci. Thesis [in Russian], Moscow (2015).

  14. M. Ya. Chernykh, T. S. Krylova, I. V. Kulikov, et al., Physics of Metals and Metallogr., 119 , No. 3, 267 (2018).

    Article  ADS  Google Scholar 

  15. D. P. Rodionov, I. V. Gervasyeva, Yu. V. Khlebnikova, et al., Physics of Metals and Metallogr., 111 , No. 6, 601 (2011).

    Article  ADS  Google Scholar 

  16. V. V. Ovchinnikov, N. V. Gushchina, F. F. Maknin’ko, et al., Russ. Phys. J., 50, No. 2, 177 (2007).

    Article  Google Scholar 

  17. I. Yu. Romanov, N. V. Gushchina, V. V. Ovchinnikov, et al., Russ. Phys. J., 60, No. 10, 1823 (2018).

    Article  Google Scholar 

  18. V. V. Ovchinnikov, Surf. Coat. Technol, 355, 65 (2018).

    Article  Google Scholar 

  19. N. V. Gavrilov, G. A. Mesyats, S. P. Nikulin, et al., J. Vac. Sci. Technol., A14, 1050 (1996).

    Article  ADS  Google Scholar 

  20. H. M. Rietveld, J. Appl. Crystallogr., 2, No. 2, 65 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Guschina.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 112–118, January, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guschina, N.V., Voronin, V.I., Proskurnina, N.V. et al. The Effect of Ion Irradiation (Аr+, E = 15−20 keV) on the Microstructure of the Deformed Ni – 13.9 wt.% W Alloy. Russ Phys J 65, 123–130 (2022). https://doi.org/10.1007/s11182-022-02614-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02614-4

Keywords

Navigation