Skip to main content
Log in

Thermal Conductivity of Polymer Composite Material Based on Phenol-Formaldehyde Resin and Boron Nitride

  • Published:
Russian Physics Journal Aims and scope

The paper presents the results of studies of thermal conductivity, structure, and physico-chemical properties of samples of polymer composite material based on thermosetting phenol-formaldehyde resin and hexagonal boron nitride. It was found that with an increase in the volume fraction of boron nitride from 5 to 85%, the effective thermal conductivity coefficient at 300 K increased from 0.63 to 18.5 W/m·K. Experimental results were compared with the data calculated using known theoretical models used to describe the process of thermal conductivity in polymer composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Mahajan, C-P. Chiu, and R. S. Prasher, Electronics Cooling, 10, No. 1, 113−126 (2005).

    Google Scholar 

  2. A. L. Moore and L. Shi, Materials Today, 17, No. 4, 163–174 (2014).

    Article  Google Scholar 

  3. C. Yu, J. Zhang, Z. Li, et al., Composites Part A: Applied Science and Manufacturing, 98, 25–31 (2017).

    Article  Google Scholar 

  4. H. Hong, J. Kim, and T. Kim, Polymers, 9, No. 12 (2017).

  5. S-L. Chung and J-S. Lin, Molecules, 21, No. 5, 670−673 (2016).

    Article  Google Scholar 

  6. H. Shin, S. Ahn, D. Kim, et al., Composites Part B: Engineering, 163, 723−729 (2020).

    Article  Google Scholar 

  7. C. Yuan, J. Li, L. Lindsay, et al., Commun. Phys., 2, No. 43 (2019).

  8. A. A. Wereszczak, T. G. Morrissey, C. N. Volante, et al., IEEE Trans. Components, Packaging and Manufactur. Technol., 3, No. 12, 1994–2005 (2013).

    Article  Google Scholar 

  9. Z. Hashin and S. Shtrikman, J. Appl. Phys., 33, No. 10, 3125–3131 (1962).

    Article  ADS  Google Scholar 

  10. D. Zhao, X. Qian, X. Gu, et al., J. Electron. Packaging, 138, No. 4, (2016).

  11. Y. Agari and T. Uno, J. Appl. Polym. Sci., 32, No. 7, 5705–5712 (1986).

    Article  Google Scholar 

  12. B. Reine, J. D. Tomaso, G. Dusserre, and P. A. Olivier, Proceedings of ECCM15. Venice, Italy, 24−28 June (2012).

  13. D. Bruggeman, Ann. Phys., 24, 636–679 (1935).

    Article  Google Scholar 

  14. Z. Wang, T. Iizuka, M. Kozako, et al., IEEE Trans. Dielectric. and Electric. Insulation., 18, No. 6, 1963–1972 (2011).

    Article  Google Scholar 

  15. L. A. Novokshonova, O. I. Kudinova, A. A. Berlin, et al. Teploprovodyashchij elektroizolyacionnyj kompozicionnyj material [Heat-Conducting Electrically Insulating Composite Material] Patent Rossiiskaia Federatsiia No. 2643985/C1 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Samoilov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 72–81, January, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilov, V.M., Danilov, E.A., Kaplan, I.M. et al. Thermal Conductivity of Polymer Composite Material Based on Phenol-Formaldehyde Resin and Boron Nitride. Russ Phys J 65, 80–90 (2022). https://doi.org/10.1007/s11182-022-02609-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02609-1

Keywords

Navigation