Skip to main content
Log in

Quantum States of the Kapitza Pendulum

  • Published:
Russian Physics Journal Aims and scope

The quantum states of the Kapitza pendulum are investigated within the framework of the effective potential obtained by the method of averaging over fast oscillations. An analytical estimate of the energy spectrum of stabilized states is given using a model potential. For the lowest states of an inverted pendulum, an expression is obtained for the spectrum in terms of energies of a harmonic oscillator corrected using perturbation theory. Tunneling effect corrections to the energies of resonance states in two wells of the effective potential are found. The results of calculations of the structure of vibrational and rotational spectra of the Kapitza pendulum by the semiclassical method and by the Numerov numerical algorithm are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. L. Kapitza, Zh. Eksp. Teor. Fiz., 21, 588 (1951).

    Google Scholar 

  2. A. Stephenson, Phil. Mag. J. Sci., 15, 233 (1908).

    Article  Google Scholar 

  3. N. N. Bogolyubov, in: Collection of Works of the Institute of Structural Mechanics of the Academy of Sciences of the Ukranien SSR, Vol. 14 [in Russian], Kiev (1950), pp. 9–34.

  4. P. L. Kapitza, Usp. Fiz. Nauk, 44, 7 (1951).

    Article  ADS  Google Scholar 

  5. L. D. Landau and E. M. Lifshits, Mechanics [in Russian], Fizmatlit, Moscow (2007).

  6. S. Rahav, I. Gilary, and S. Fishman, Phys. Rev. Lett., 91, 110404 (2003).

  7. Y.B. Simons and B. Meerson, Phys. Rev. E, 80, 042102 (2009).

  8. Huang Zhi-Long, Jin Xiao-Ling, and Zhu Zi-Qi, Chin. Phys. Lett., 25, 3099 (2008).

    Article  ADS  Google Scholar 

  9. V. N. Chelomei, Dokl. Akad. Nauk SSSR, 110, 345 (1956).

    MathSciNet  Google Scholar 

  10. V. N. Chelome, Dokl. Akad. Nauk SSSR, 270, 62 (1983).

    Google Scholar 

  11. J. Mitropolsky, Ann. Mat. Pura Appl., 108, 379 (1976).

    Article  MathSciNet  Google Scholar 

  12. A. A. Seiranyan and A. P. Seiranyan, J. Appl. Math. Mech., 70, 754 (2006).

    Article  MathSciNet  Google Scholar 

  13. A. K. Belyaev, N.F. Morozov, P. E. Tovstik, et al., Vestn. St. Petersburg Univ.: Math. Mech. Astron., 5, 477 (2018).

  14. A. V. Gaponov-Grekhov and M. A. Miller, Zh. Eksp. Teor. Fiz., 34, 242 (1958).

    Google Scholar 

  15. A. V. Gaponov-Grekhov and M. A. Miller, Zh. Eksp. Teor. Fiz., 34, 751 (1958).

    Google Scholar 

  16. A. Ashkin, Phys. Rev. Lett., 24, 156 (1970).

    Article  ADS  Google Scholar 

  17. A. Ashkin, J.M. Dziedzic, and T. Yamane, Nature, 330, 769 (1987).

    Article  ADS  Google Scholar 

  18. V. S. Letokhov, V. G. Minogin, and B. D. Pavlik, Opt. Commun., 19, 72 (1976).

    Article  ADS  Google Scholar 

  19. V. Zharnitsky, E. Grenier, C. K. R. T. Jones, et al., Physica D, 152−153, 794 (2001).

    Article  ADS  Google Scholar 

  20. A. Alberucci, L. Marrucci, and G. Assanto, New J. Phys., 15, 083013 (2013).

  21. A. L. M. Muniz, A. Alberucci, C. P. Jisha, et al., Opt. Lett., 44, 6013 (2019).

    Article  ADS  Google Scholar 

  22. B. T. Torosov, G. Della Valle, and S. Longhi, Phys. Rev. A, 88, 052106 (2013).

  23. D. N. Puzyrev, N. V. Alexeeva, I. V. Barashenkov, et al., 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich (2019).

  24. S. Rahav, I. Gilary, and S. Fishman, Phys. Rev. Lett., 91, 110404 (2003. V.).

  25. M. Bandyopadhyay andddd S. Dattagupta, J. Phys., 70, 381 (2008).

  26. S. Rahav, I. Gilary, and S. Fishman, Phys. Rev. A, 68, 013820 (2003).

  27. Yu. V. Bludov and V. V. Konotop, Phys. Rev. A, 75, 053614 (2007).

  28. L. D. Landau and E. M. Lifshits, Quantum mechanics [in Russian], Fizmatlit, Moscow (2008).

  29. I. Gilary, N. Moiseyev, S. Rahav, et al., J. Phys. A: Math. Gen., 36, L409 (2003).

    Article  Google Scholar 

  30. S.V. Rajagopal, K. M. Fujiwara, R. Senaratne, et al., Ann. Phys., 529, 1700008 (2017).

    Article  Google Scholar 

  31. F. Kh. Abdullaev and R. Galimzyanov, J. Phys. B, 36, 1099 (2003).

  32. J. Martin, B. Georgeot, D. Guéry-Odelin, et al., Phys. Rev. A, 97, 023607 (2018); Erratum Phys. Rev. A, 97, 039906 (2018).

  33. L. D’Alessio and A. Polkovnikov, Ann. Phys., 333, 19 (2013).

    Article  ADS  Google Scholar 

  34. A. Lerose, J. Marino, A. Gambassi, et al., Phys. Rev. B, 100, 104306 (2019).

  35. R. Citro, E. G. Dalla Torre, L. D’Alessio, et al., Ann. Phys., 360, 694 (2015).

    Article  Google Scholar 

  36. E. Boukobza, M. G. Moore, D. Cohen, et al., Phys. Rev. Lett., 104, 240402 (2010).

  37. C. J. Richards, T. J. Smart, P. H. Jones, et al., Sci. Rep., 8, 13107 (2018).

    Article  ADS  Google Scholar 

  38. S. Lin, M, Milošević, L. Covaci, et al., Sci. Rep., 4, 4542 (2015).

  39. R. J. Cook, D. G. Shankland, and A. L. Wells, Phys. Rev. A, 31, 564 (1985).

    Article  ADS  Google Scholar 

  40. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, et al., eds., NIST Handbook of Mathematical Functions, Cambridge University Press, – Cambridge (2010).

  41. W. Magnus and S. Winkler, Hill’s Equation, Interscience Publishers, New York (1966).

    MATH  Google Scholar 

  42. M. Leibscher and S. Burkhard, Phys. Rev. A, 80, 012510 (2009).

  43. B. M. Karnakov and V. P. Krainov, WKB Approximation in Atomic Physics, Springer, Berlin (2013).

    Book  Google Scholar 

  44. L. Brillouin, Q. Appl. Math., 7, 363 (1950).

  45. E. Merzbacher, Quantum Mechanics, John Wiley and Sons, New York (1970).

    MATH  Google Scholar 

  46. A. M. Dyhne, Sov. Phys. JETP, 40, 14123 (1961).

    MathSciNet  Google Scholar 

  47. V. A. Benderskii, E.V. Vetoshkin, and E. I. Kats, J. Exp. Theor. Phys., 95, 645 (2002).

    Article  ADS  Google Scholar 

  48. E. V. Vybornyi, Theor. Math. Phys., 178, 93 (2014).

    Article  MathSciNet  Google Scholar 

  49. N. N. Kalitkin, Numerical Methods [in Russian], Nauka, Moscow (1978).

  50. Z. Lin, Z. Wang, G. Yuan, et al., J. Opt. Soc. Am. B, 35, 1578 (2018).

    Article  ADS  Google Scholar 

  51. L. Angraini and I. Sudiarta, J. Phys.: Theor. Appl., 2, 27 (2018).

    Google Scholar 

  52. P.A. Golovinski, Phys. Lett. A, 384, 126203 (2020).

  53. P. M. Bleher, Сommun. Math. Phys., 165, 621 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Golovinski.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 21–30, January, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovinski, P.A., Dubinkin, V.A. Quantum States of the Kapitza Pendulum. Russ Phys J 65, 21–32 (2022). https://doi.org/10.1007/s11182-022-02603-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02603-7

Keywords

Navigation