Skip to main content
Log in

Energy Spectrum and Optical Absorption Spectrum of Fullerene C70 Within the Hubbard Model

  • CONDENSED-STATE PHYSICS
  • Published:
Russian Physics Journal Aims and scope

The energy spectrum of fullerene C70 is obtained within the framework of the Hubbard model in the static fluctuation approximation. The energy states are classified and the allowed transitions in the energy spectrum of fullerene C70 are determined using the methods of group theory. Assignments of optical absorption bands experimentally observed for C70 fullerene are suggested based on this spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. W. Kroto, J. R. Heath, S. C. O’Brien, et al., Nature, 318, 162 (1985).

    Article  ADS  Google Scholar 

  2. D. R. McKenzie, C. A. Davis, D. J. H. Cockayne, et al., Nature, 355, 622 (1992).

    Article  ADS  Google Scholar 

  3. P. W. Fowler, Contemp. Phys., 37, 235 (1996).

    Article  ADS  Google Scholar 

  4. H. W. Kroto, Nature, 329, 529 (1987).

    Article  ADS  Google Scholar 

  5. J. Marrel, S. Ketta, and J. Tedder, Theory of Valence [Russian translation], Mir, Moscow (1968).

  6. E. Huckel, Z. Phys., 69, 423 (1930).

    Article  ADS  Google Scholar 

  7. A. A. Levin, Introduction into Solid State Quantum Chemistry [Russian translation], Khimiya, Moscow (1974).

    Google Scholar 

  8. R. A. Harris and L. M. Falicov, J. Chem. Phys., 51, 5034 (1969).

    Article  ADS  Google Scholar 

  9. G. Stollhoff, Phys. Rev. B, 44, 10998 (1991).

    Article  ADS  Google Scholar 

  10. R. O. Zaitsev, JETP Letters, 94, No. 3, 206 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  11. T. O. Wehling, E. Sasioglu, C. Friedrich, et al., Phys. Rev. Lett., 106, 236805 (2011).

    Article  ADS  Google Scholar 

  12. J. Hubbard, Proc. Roy. Soc. A, 276, 238 (1963).

    Article  ADS  Google Scholar 

  13. D. I. Khomskii, Fiz. Met. Metalloved., 29, 31 (1970).

    Google Scholar 

  14. E. V. Kuz’min, G. A. Petrakovskii, and É. A. Zavadskii, Physics of Magnetically Ordered Substances [in Russian], Nauka, Novosibirsk (1976).

    Google Scholar 

  15. A. V. Silant’ev, J. Exp. Theor. Phys., 121, No. 4, 653 (2015).

    Article  ADS  Google Scholar 

  16. Yu. A. Izyumov, M. I. Katsnel’son, and Yu. N. Skryabin, Magnetism of Collectivized Electrons [in Russian], Nauka, Moscow (1994).

  17. A. V. Silant’ev, Russ. Phys. J., 57, No. 11, 1491 (2015).

    Article  Google Scholar 

  18. A. V. Silant’ev, Izv. Vyssh. Uchebn. Zaved. Povolzh. Reg. Fiz.-Mat. Nauki, No. 1, 168 (2015).

  19. A. V. Silant’ev, Izv. Vyssh. Uchebn. Zaved. Povolzh. Reg. Fiz.-Mat. Nauki, No. 1, 135 (2013).

  20. G. S. Ivanchenko and N. G. Lebedev, Phys. Solid State, 49, No. 1, 189 (2007).

    Article  ADS  Google Scholar 

  21. A. V. Silant’ev, Izv. Vyssh. Ucheb. Zaved. Povolzh. Reg. Fiz.-Mat. Nauki, No. 1, 101 (2016).

  22. A. V. Silant’ev, Phys. Met. Metallograph, 118, No. 1, 1 (2017).

    Article  ADS  Google Scholar 

  23. A. I. Murzashev, Russ. Phys. J., 55, No. 5, 524 (2012).

    Article  Google Scholar 

  24. B. V. Lobanov and A. I. Murzashev, Phys. Solid State, 59, No. 2, 423 (2017).

    Article  ADS  Google Scholar 

  25. A. V. Silant’ev, Russ. Phys. J., 56, No. 2, 192 (2013).

    Article  Google Scholar 

  26. A. V. Silant’ev, Izv. Vyssh. Ucheb. Zaved. Povolzh. Reg. Fiz.-Mat. Nauki, No. 4, 214 (2012).

  27. A. V. Silant’ev, Izv. Vyssh. Ucheb. Zaved. Povolzh. Reg. Fiz.-Mat. Nauki, No. 2, 164 (2015).

  28. S. V. Tyablikov, Methods of the Quantum Theory of Magnetism [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  29. M. Bühl and A. Hirsch, Chem. Rev., 101, No. 5, 1153 (2001).

    Article  Google Scholar 

  30. K. Hedberg, L. Hedberg, M. Buhl, et al., J. Am. Chem. Soc., 119, 5314 (1997).

    Article  Google Scholar 

  31. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego (1996).

    Google Scholar 

  32. I. G. Kaplan, Symmetry of Many-Electron Systems [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  33. P. W. Fowler and J. Woolrich, Chem. Phys. Lett., 127, 78 (1986).

    Article  ADS  Google Scholar 

  34. K. Nakao, N. Kurita, and M. Fujita, Phys. Rev. B, 49, 11415 (1994).

    Article  ADS  Google Scholar 

  35. P. F. Coheur, M. Carleer, and R. Colin, J. Phys. B, 29, 4987 (1996).

    Article  ADS  Google Scholar 

  36. J. P. Hare, H. W. Kroto, and R. Taylor, Chem. Phys. Lett., 177, 394 (1991).

    Article  ADS  Google Scholar 

  37. H. Ajie, M. M. Alvarez, S. J. Anz, et al., J. Phys. Chem., 94, 8630 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Silant’ev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 50–60, June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silant’ev, A.V. Energy Spectrum and Optical Absorption Spectrum of Fullerene C70 Within the Hubbard Model. Russ Phys J 60, 978–989 (2017). https://doi.org/10.1007/s11182-017-1167-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-017-1167-7

Keywords

Navigation