Skip to main content

Advertisement

Log in

Gut-brain mechanisms underlying changes in disordered eating behaviour after bariatric surgery: a review

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Bariatric surgery results in long-term weight loss and an improved metabolic phenotype due to changes in the gut-brain axis regulating appetite and glycaemia. Neuroendocrine alterations associated with bariatric surgery may also influence hedonic aspects of eating by inducing changes in taste preferences and central reward reactivity towards palatable food. However, the impact of bariatric surgery on disordered eating behaviours (e.g.: binge eating, loss-of-control eating, emotional eating and ‘addictive eating’), which are commonly present in people with obesity are not well understood. Increasing evidence suggests gut-derived signals, such as appetitive hormones, bile acid profiles, microbiota concentrations and associated neuromodulatory metabolites, can influence pathways in the brain implicated in food intake, including brain areas involved in sensorimotor, reward-motivational, emotional-arousal and executive control components of food intake. As disordered eating prevalence is a key mediator of weight-loss success and patient well-being after bariatric surgery, understanding how changes in the gut-brain axis contribute to disordered eating incidence and severity after bariatric surgery is crucial to better improve treatment outcomes in people with obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. The GBD 2015 Obesity Collaborators. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. 2017. https://doi.org/10.1056/NEJMoa1614362.

  2. Sjöström L, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307:56–65.

    Article  PubMed  Google Scholar 

  3. Griffiths LJ, Parsons TJ, Hill AJ. Self-esteem and quality of life in obese children and adolescents: A systematic review. Int J Pediatr Obes. 2010;5:282–304.

    Article  PubMed  Google Scholar 

  4. Wu Y-K, Berry DC. Impact of weight stigma on physiological and psychological health outcomes for overweight and obese adults: A systematic review. J Adv Nurs. 2018;74:1030–42.

    Article  PubMed  Google Scholar 

  5. Williams G, Fruhbeck G. Obesity: Science to practice. John Wiley & Sons; 2009.

  6. Succurro E, et al. Obese patients with a binge eating disorder have an unfavorable metabolic and inflammatory profile. Medicine (Baltimore). 2015;94.

  7. Saunders R. Binge eating in gastric bypass patients before surgery. Obes Surg. 1999;9:72–6.

    Article  CAS  PubMed  Google Scholar 

  8. Mannucci E, et al. Quality of life and overweight: the obesity related well-being (Orwell 97) questionnaire. Addict Behav. 1999;24(3):345–57.

    Article  CAS  PubMed  Google Scholar 

  9. Sjöström L, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351:2683–93.

    Article  PubMed  Google Scholar 

  10. Rogers AM. Current state of bariatric surgery: Procedures, data, and patient management. Tech Vasc Interv Radiol. 2020;23:100654.

    Article  PubMed  Google Scholar 

  11. Ramos A, et al. IFSO Fifth Global Registry Report. Dendrite & Clinical Systems. 2019; 1-100.

  12. Manning S, Pucci A, Batterham RL. Roux-en-Y gastric bypass: Effects on feeding behavior and underlying mechanisms. J Clin Invest. 2015;125:939–48.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mulla CM, Middelbeek RJW, Patti M-E. Mechanisms of weight loss and improved metabolism following bariatric surgery. Ann N Y Acad Sci. 2018;1411:53–64.

    Article  PubMed  Google Scholar 

  14. Miras AD, le Roux CW. Mechanisms underlying weight loss after bariatric surgery. Nat Rev Gastroenterol Hepatol. 2013;10:575–84.

    Article  PubMed  Google Scholar 

  15. Murphy KG, Bloom SR. Gut hormones and the regulation of energy homeostasis. Nature. 2006;444:854–9.

    Article  CAS  PubMed  Google Scholar 

  16. Al-Najim W, Docherty NG, le Roux CW. Food intake and eating behavior after bariatric surgery. Physiol Rev. 2018;98:1113–41.

    Article  CAS  PubMed  Google Scholar 

  17. Opozda M, Chur-Hansen A, Wittert G. Changes in problematic and disordered eating after gastric bypass, adjustable gastric banding and vertical sleeve gastrectomy: A systematic review of pre-post studies. Obes Rev. 2016;17:770–92.

    Article  CAS  PubMed  Google Scholar 

  18. Vainik U, García-García I, Dagher A. Uncontrolled eating: A unifying heritable trait linked with obesity, overeating, personality and the brain. Eur J Neurosci. 2019;50:2430–45.

    Article  PubMed  Google Scholar 

  19. Stammers L, et al. Identifying stress-related eating in behavioural research: A review. Horm Behav. 2020;124:104752.

    Article  PubMed  Google Scholar 

  20. Dingemans A, Danner U, Parks M. Emotion regulation in binge eating disorder: A review. Nutrients. 2017;9:1274.

    Article  PubMed Central  Google Scholar 

  21. van Strien T. Causes of emotional eating and matched treatment of obesity. Curr Diab Rep. 2018;18:35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kessler RM, Hutson PH, Herman BK, Potenza MN. The neurobiological basis of binge-eating disorder. Neurosci Biobehav Rev. 2016;63:223–38.

    Article  PubMed  Google Scholar 

  23. Parker K, O’Brien P, Brennan L. Measurement of disordered eating following bariatric surgery: A systematic review of the literature. Obes Surg. 2014;24:945–53.

    Article  PubMed  Google Scholar 

  24. Baldofski S, et al. Nonnormative eating behavior and psychopathology in prebariatric patients with binge-eating disorder and night eating syndrome. Surg Obes Relat Dis. 2015;11:621–6.

    Article  PubMed  Google Scholar 

  25. Spirou D, Raman J, Smith E. Psychological outcomes following surgical and endoscopic bariatric procedures: A systematic review. Obes Rev. 2020;21.

  26. Ivezaj V, Wiedemann AA, Grilo CM. Food addiction and bariatric surgery: A systematic review of the literature: Food addiction and bariatric surgery. Obes Rev. 2017;18:1386–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dodsworth A, Warren-Forward H, Baines S. Changes in eating behavior after laparoscopic adjustable gastric banding: A systematic review of the literature. Obes Surg. 2010;20:1579–93.

    Article  PubMed  Google Scholar 

  28. Wong LY, et al. Change in emotional eating after bariatric surgery: Systematic review and meta-analysis. BJS Open. 2020;4:995–1014.

    Article  PubMed Central  Google Scholar 

  29. Athanasiadis DI, Martin A, Kapsampelis P, Monfared S, Stefanidis D. Factors associated with weight regain post-bariatric surgery: A systematic review. Surg Endosc. 2021. https://doi.org/10.1007/s00464-021-08329-w.

    Article  PubMed  Google Scholar 

  30. Bryant EJ, Malik MS, Whitford-Bartle T, Waters GM. The effects of bariatric surgery on psychological aspects of eating behaviour and food intake in humans. Appetite. 2020;150:104575.

    Article  CAS  PubMed  Google Scholar 

  31. Pepino MY, Stein RI, Eagon JC, Klein S. Bariatric surgery-induced weight loss causes remission of food addiction in extreme obesity. Obesity. 2014;22:1792–8.

    Article  PubMed  Google Scholar 

  32. Clark SM, Saules KK. Validation of the Yale Food Addiction Scale among a weight-loss surgery population. Eat Behav. 2013;14:216–9.

    Article  PubMed  Google Scholar 

  33. Kofman MD, Lent MR, Swencionis C. Maladaptive eating patterns, quality of life, and weight outcomes following gastric bypass: Results of an Internet survey. Obesity. 2010;18:1938–43.

    Article  PubMed  Google Scholar 

  34. Smith KE, et al. Loss of control eating and binge eating in the 7 years following bariatric surgery. Obes Surg. 2019;29:1773–80.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Conceição EM, Utzinger LM, Pisetsky EM. Eating disorders and problematic eating behaviours before and after bariatric surgery: Characterization, assessment and association with treatment outcomes. Eur Eat Disord Rev. 2015;23:417–25.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Marino JM, et al. The emergence of eating pathology after bariatric surgery: A rare outcome with important clinical implications. Int J Eat Disord. 2012;45:179–84.

    Article  PubMed  Google Scholar 

  37. Colles SL, Dixon JB, O’Brien PE. Grazing and loss of control related to eating: Two high-risk factors following bariatric surgery. Obesity. 2008;16:615–22.

    Article  PubMed  Google Scholar 

  38. Herpertz S, et al. Does obesity surgery improve psychosocial functioning? A systematic review. Int J Obes. 2003;27:1300–14.

    Article  CAS  Google Scholar 

  39. Powers PS, Perez A, Boyd F, Rosemurgy A. Eating pathology before and after bariatric surgery: A prospective study. Int J Eat Disord. 1999;25:293–300.

    Article  CAS  PubMed  Google Scholar 

  40. Busetto L, et al. Weight loss and postoperative complications in morbidly obese patients with binge eating disorder treated by laparoscopic adjustable gastric banding. Obes Surg. 2005;15:195–201.

    Article  PubMed  Google Scholar 

  41. Saunders R. Compulsive eating and gastric bypass surgery: What does hunger have to do with It? Obes Surg. 2001;11:757–61.

    Article  CAS  PubMed  Google Scholar 

  42. Williams-Kerver GA, Steffen KJ, Mitchell JE. Eating pathology after bariatric surgery: An updated review of the recent literature. Curr Psychiatry Rep. 2019;21:86.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rolls ET. Taste, olfactory and food texture reward processing in the brain and the control of appetite. Proc Nutr Soc. 2012;71:488–501.

    Article  PubMed  Google Scholar 

  44. Oberndorfer TA, et al. Altered insula response to sweet taste processing after recovery from anorexia and bulimia nervosa. Am J Psychiatry. 2013;170:1143–51.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Radeloff D, et al. High-fat taste challenge reveals altered striatal response in women recovered from bulimia nervosa: A pilot study. World J Biol Psychiatry. 2014;15:307–16.

    Article  PubMed  Google Scholar 

  46. Kenler HA, Brolin RE, Cody RP. Changes in eating behavior after horizontal gastroplasty and Roux-en-Y gastric bypass. Am J Clin Nutr. 1990;52:87–92.

    Article  CAS  PubMed  Google Scholar 

  47. Olbers T, et al. Body composition, dietary intake, and energy expenditure after laparoscopic Roux-en-Y gastric bypass and laparoscopic vertical banded gastroplasty. Ann Surg. 2006;244:715–22.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ernst B, Thurnheer M, Wilms B, Schultes B. Differential changes in dietary habits after gastric bypass versus gastric banding operations. Obes Surg. 2009;19:274–80.

    Article  PubMed  Google Scholar 

  49. Zerrweck C, et al. Taste and olfactory changes following laparoscopic gastric bypass and sleeve gastrectomy. Obes Surg. 2016;26:1296–302.

    Article  PubMed  Google Scholar 

  50. Gero D, et al. Desire for core tastes decreases after sleeve gastrectomy: A single-center longitudinal observational study with 6-month follow-up. Obes Surg. 2017;27:2919–26.

    Article  PubMed  Google Scholar 

  51. Scholtz S, et al. Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut. 2014;63:891–902.

    Article  PubMed  Google Scholar 

  52. Duan S, et al. Bariatric surgery induces alterations in effective connectivity between the orbitofrontal cortex and limbic regions in obese patients. Sci China Inf Sci. 2020;63:170104.

    Article  Google Scholar 

  53. le Roux CW, et al. Gastric bypass reduces fat intake and preference. Am J Physiol Regul Integr Comp Physiol. 2011;301:R1057–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Seyfried F, et al. Effects of preoperative exposure to a high-fat versus a low-fat diet on ingestive behavior after gastric bypass surgery in rats. Surg Endosc. 2013;27:4192–201.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zheng H, et al. Meal patterns, satiety, and food choice in a rat model of Roux-en-Y gastric bypass surgery. Am J Physiol Regul Integr Comp Physiol. 2009;297:R1273–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shin AC, Zheng H, Pistell PJ, Berthoud H-R. Roux-en-Y gastric bypass surgery changes food reward in rats. Int J Obes. 2011;2005(35):642–51.

    Article  CAS  Google Scholar 

  57. Saeidi N, et al. Sleeve gastrectomy and Roux-en-Y gastric bypass exhibit differential effects on food preferences, nutrient absorption and energy expenditure in obese rats. Int J Obes. 2012;2005(36):1396–402.

    Article  Google Scholar 

  58. Bueter M, et al. Alterations of sucrose preference after Roux-en-Y gastric bypass. Physiol Behav. 2011;104:709–21.

    Article  CAS  PubMed  Google Scholar 

  59. Chelikani PK, Shah IH, Taqi E, Sigalet DL, Koopmans HH. Comparison of the effects of Roux-en-Y gastric bypass and ileal transposition surgeries on food intake, body weight, and circulating peptide YY concentrations in rats. Obes Surg. 2010;20:1281–8.

    Article  PubMed  Google Scholar 

  60. Wilson-Pérez HE, et al. The effect of vertical sleeve gastrectomy on food choice in rats. Int J Obes. 2013;2005(37):288–95.

    Article  CAS  Google Scholar 

  61. García-Cabrerizo R, Carbia C, O’Riordan KJ, Schellekens H, Cryan JF. Microbiota-gut-brain axis as a regulator of reward processes. J Neurochem. 2021;157:1495–524.

    Article  PubMed  CAS  Google Scholar 

  62. Volkow ND, Wang G-J, Baler RD. Reward, dopamine and the control of food intake: Implications for obesity. Trends Cogn Sci. 2011;15:37–46.

    Article  CAS  PubMed  Google Scholar 

  63. Dallman MF, et al. Chronic stress and obesity: A new view of “comfort food.” Proc Natl Acad Sci U S A. 2003;100:11696–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Meule A. The psychology of food cravings: The role of food deprivation. Curr Nutr Rep. 2020;9:251–7.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Burge JC, Schaumburg JZ, Choban PS, DiSilvestro RA, Flancbaum L. Changes in patients’ taste acuity after Roux-en-Y gastric bypass for clinically severe obesity. J Am Diet Assoc. 1995;95:666–70.

    Article  CAS  PubMed  Google Scholar 

  66. Altun H, et al. Improved gustatory sensitivity in morbidly obese patients after laparoscopic sleeve gastrectomy. Ann Otol Rhinol Laryngol. 2016;125:536–40.

    Article  PubMed  Google Scholar 

  67. El Labban S, Safadi B, Olabi A. Effect of Roux-en-Y gastric bypass and sleeve gastrectomy on taste acuity and sweetness acceptability in postsurgical subjects. Nutrition. 2016;32:1299–302.

    Article  PubMed  Google Scholar 

  68. Pepino MY, et al. Changes in taste perception and eating behavior after bariatric surgery-induced weight loss in women. Obesity. 2014;22:E13–20.

    Article  PubMed  Google Scholar 

  69. Smith KR, et al. Taste-related reward is associated with weight loss following bariatric surgery. J Clin Invest. 2020;130:4370–81.

    PubMed  PubMed Central  Google Scholar 

  70. Thanos PK, et al. Roux-en-Y gastric bypass alters brain activity in regions that underlie reward and taste perception. PLoS One. 2015;10:e0125570.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Hajnal A, et al. Gastric bypass surgery alters behavioral and neural taste functions for sweet taste in obese rats. Am J Physiol Gastrointest Liver Physiol. 2010;299:G967–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Korner J, et al. Effects of Roux-en-Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY, and insulin. J Clin Endocrinol Metab. 2005;90:359–65.

    Article  CAS  PubMed  Google Scholar 

  73. le Roux CW, et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg. 2007;246:780–5.

    Article  PubMed  Google Scholar 

  74. Dickson SL, et al. The glucagon-like peptide 1 (GLP-1) analogue, exendin-4, decreases the rewarding value of food: A new role for mesolimbic GLP-1 receptors. J Neurosci. 2012;32:4812–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hankir MK, et al. Gastric bypass surgery recruits a gut PPAR-α-striatal D1R pathway to reduce fat appetite in obese rats. Cell Metab. 2017;25:335–44.

    Article  CAS  PubMed  Google Scholar 

  76. Tellez LA, et al. A gut lipid messenger links excess dietary fat to dopamine deficiency. Science. 2013;341:800–2.

    Article  CAS  PubMed  Google Scholar 

  77. Romano A, et al. Oleoylethanolamide decreases frustration stress-induced binge-like eating in female rats: A novel potential treatment for binge eating disorder. Neuropsychopharmacology. 2020. https://doi.org/10.1038/s41386-020-0686-z.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hankir MK, et al. Suppressed fat appetite after Roux-en-Y gastric bypass surgery associates with reduced brain μ-opioid receptor availability in diet-induced obese male rats. Front Neurosci. 2017;10:620.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Laleh P, Yaser K, Alireza O. Oleoylethanolamide: A novel pharmaceutical agent in the management of obesity-an updated review. J Cell Physiol. 2019;234:7893–902.

    Article  CAS  PubMed  Google Scholar 

  80. Karimian Azari E, et al. Vagal afferents are not necessary for the satiety effect of the gut lipid messenger oleoylethanolamide. Am J Physiol-Regul Integr Comp Physiol. 2014;307:R167–78.

    Article  CAS  Google Scholar 

  81. Hutch CR, et al. Oea signaling pathways and the metabolic benefits of vertical sleeve gastrectomy. Ann Surg. 2020;271:509–18.

    Article  PubMed  Google Scholar 

  82. Goldstein N, et al. Hypothalamic detection of macronutrients via multiple gut-brain pathways. Cell Metab. 2021;33:676-687.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nielsen MS, Schmidt JB, le Roux CW, Sjödin A. Effects of Roux-en-Y Gastric bypass and sleeve gastrectomy on food preferences and potential mechanisms involved. Curr Obes Rep. 2019;8:292–300.

    Article  PubMed  Google Scholar 

  84. Seeley RJ, et al. The role of CNS glucagon-like peptide-1 (7–36) amide receptors in mediating the visceral illness effects of lithium chloride. J Neurosci. 2000;20:1616–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dischinger U, et al. GLP-1 and PYY3-36 reduce high-fat food preference additively after Roux-en-Y gastric bypass in diet-induced obese rats. Surg Obes Relat Dis. 2019;15:1483–92.

    Article  PubMed  Google Scholar 

  86. Ahmad N, Pfalzer A, Kaplan L. Roux-en-Y gastric bypass normalizes the blunted postprandial bile acid excursion associated with obesity. Int J Obes. 2013;2005(37):1553–9.

    Article  CAS  Google Scholar 

  87. Deems RO, Friedman MI. Macronutrient selection in an animal model of cholestatic liver disease. Appetite. 1988;11:73–80.

    Article  CAS  PubMed  Google Scholar 

  88. Perino A, et al. Central anorexigenic actions of bile acids are mediated by TGR5. Nat Metab. 2021;3:595–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Castellanos-Jankiewicz A, et al. Hypothalamic bile acid-TGR5 signaling protects from obesity. Cell Metab. 2021;33:1483-1492.e10.

    Article  CAS  PubMed  Google Scholar 

  90. Bensalem A, et al. Bile acid receptor TGR5 is critically involved in preference for dietary lipids and obesity. J Nutr Biochem. 2020;76:108298.

    Article  CAS  PubMed  Google Scholar 

  91. Nielsen MS, et al. Factors associated with favorable changes in food preferences after bariatric surgery. Obes Surg. 2021;31:3514–24.

    Article  PubMed  Google Scholar 

  92. Heitmann BL, Lissner L. Dietary underreporting by obese individuals–is it specific or non-specific? BMJ. 1995;311:986–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nielsen MS, et al. Bariatric surgery does not affect food preferences, but individual changes in food preferences may predict weight loss. Obesity. 2018;26:1879–87.

    Article  CAS  Google Scholar 

  94. Frank S, et al. Altered brain activity in severely obese women may recover after Roux-en Y gastric bypass surgery. Int J Obes. 2014;38:341–8.

    Article  CAS  Google Scholar 

  95. Ochner CN, et al. Selective reduction in neural responses to high calorie foods following gastric bypass surgery. Ann Surg. 2011;253:502–7.

    Article  PubMed  Google Scholar 

  96. Ochner CN, et al. Neural responsivity to food cues in fasted and fed states pre and post gastric bypass surgery. Neurosci Res. 2012;74:138–43.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gupta A, Osadchiy V, Mayer EA. Brain–gut–microbiome interactions in obesity and food addiction. Nat Rev Gastroenterol Hepatol. 2020;17:655–72.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ravichandran S, et al. Alterations in reward network functional connectivity are associated with increased food addiction in obese individuals. Sci Rep. 2021;11:1–15.

    Article  CAS  Google Scholar 

  99. Weygandt M, Schaefer A, Schienle A, Haynes J-D. Diagnosing different binge-eating disorders based on reward-related brain activation patterns. Hum Brain Mapp. 2012. https://doi.org/10.1002/hbm.21345.

    Article  PubMed  Google Scholar 

  100. van Bloemendaal L, et al. Brain reward-system activation in response to anticipation and consumption of palatable food is altered by glucagon-like peptide-1 receptor activation in humans. Diabetes Obes Metab. 2015;17:878–86.

    Article  PubMed  CAS  Google Scholar 

  101. van Bloemendaal L, et al. Emotional eating is associated with increased brain responses to food-cues and reduced sensitivity to GLP-1 receptor activation. Obesity. 2015;23:2075–82.

    Article  PubMed  CAS  Google Scholar 

  102. Wood SMW, et al. Emotional eating and routine restraint scores are associated with activity in brain regions involved in urge and self-control. Physiol Behav. 2016;165:405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chechlacz M, et al. Diabetes dietary management alters responses to food pictures in brain regions associated with motivation and emotion: A functional magnetic resonance imaging study. Diabetologia. 2009;52:524–33.

    Article  CAS  PubMed  Google Scholar 

  104. Killgore WDS, Yurgelun-Todd DA. Affect modulates appetite-related brain activity to images of food. Int J Eat Disord. 2006;39:357–63.

    Article  PubMed  Google Scholar 

  105. Wagner DD, Boswell RG, Kelley WM, Heatherton TF. Inducing negative affect increases the reward value of appetizing foods in dieters. J Cogn Neurosci. 2012. https://doi.org/10.1162/jocn_a_00238.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Eiler WJA, Dzemidzic M, Case KR, Considine RV, Kareken DA. Correlation between ventromedial prefrontal cortex activation to food aromas and cue-driven eating: An fMRI study. Chemosens Percept. 2012;5:27–36.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Bohon C, Stice E. Negative affect and neural response to palatable food intake in bulimia nervosa. Appetite. 2012;58:964–70.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Thanarajah SE, et al. Food intake recruits orosensory and post-ingestive dopaminergic circuits to affect eating desire in humans. Cell Metab. 2019;29:695-706.e4.

    Article  CAS  PubMed  Google Scholar 

  109. Dunn JP, et al. Decreased dopamine type 2 receptor availability after bariatric surgery: Preliminary findings. Brain Res. 2010;1350:123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Steele KE, et al. Alterations of central dopamine receptors before and after gastric bypass surgery. Obes Surg. 2010;20:369–74.

    Article  PubMed  Google Scholar 

  111. Hankir MK, Ashrafian H, Hesse S, Horstmann A, Fenske WK. Distinctive striatal dopamine signaling after dieting and gastric bypass. Trends Endocrinol Metab. 2015;26:223–30.

    Article  CAS  PubMed  Google Scholar 

  112. Reddy IA, et al. Striatal dopamine homeostasis is altered in mice following Roux-en-Y gastric bypass surgery. ACS Chem Neurosci. 2014;5:943–51.

    Article  CAS  PubMed  Google Scholar 

  113. van der Zwaal EM, et al. Striatal dopamine D2/3 receptor availability increases after long-term bariatric surgery-induced weight loss. Eur Neuropsychopharmacol. 2016;26:1190–200.

    Article  PubMed  CAS  Google Scholar 

  114. Han W, et al. Striatal dopamine links gastrointestinal rerouting to altered sweet appetite. Cell Metab. 2016;23:103–12.

    Article  PubMed  CAS  Google Scholar 

  115. Goldstone AP, et al. Link between increased satiety gut hormones and reduced food reward after gastric bypass surgery for obesity. J Clin Endocrinol Metab. 2016;101:599–609.

    Article  CAS  PubMed  Google Scholar 

  116. ten Kulve JS, et al. Endogenous GLP1 and GLP1 analogue alter CNS responses to palatable food consumption. J Endocrinol. 2016;229:1–12.

    Article  PubMed  CAS  Google Scholar 

  117. Sweeney P, Yang Y. Neural circuit mechanisms underlying emotional regulation of homeostatic feeding. Trends Endocrinol Metab. 2017;28:437–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bartra O, McGuire JT, Kable JW. The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage. 2013;76:412–27.

    Article  PubMed  Google Scholar 

  119. Frost G, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014;5:3611.

    Article  CAS  PubMed  Google Scholar 

  120. Byrne CS, et al. Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods. Am J Clin Nutr. 2016;104:5–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chambers ES, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64:1744–54.

    Article  CAS  PubMed  Google Scholar 

  122. Torres-Fuentes C, et al. Short-chain fatty acids and microbiota metabolites attenuate ghrelin receptor signaling. FASEB J. 2019;33:13546–59.

    Article  CAS  PubMed  Google Scholar 

  123. Dong TS, et al. A distinct brain-gut-microbiome profile exists for females with obesity and food addiction. Obesity. 2020;28:1477–86.

    Article  CAS  PubMed  Google Scholar 

  124. Sanmiguel CP, et al. Surgically induced changes in gut microbiome and hedonic eating as related to weight loss: Preliminary findings in obese women undergoing bariatric surgery. Psychosom Med. 2017;79:880–7.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Dong TS, et al. Improvement in uncontrolled eating behavior after laparoscopic sleeve gastrectomy is associated with alterations in the brain–gut–microbiome axis in obese women. Nutrients. 2020;12(10):2924.

    Article  CAS  PubMed Central  Google Scholar 

  126. Hong J, et al. Reversal of functional brain activity related to gut microbiome and hormones after VSG surgery in patients with obesity. J Clin Endocrinol Metab. 2021. https://doi.org/10.1210/clinem/dgab297.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Herman A, Bajaka A. The role of the intestinal microbiota in eating disorders – bulimia nervosa and binge eating disorder. Psychiatry Res. 2021;300:113923.

    Article  CAS  PubMed  Google Scholar 

  128. Jennis M, et al. Microbiota-derived tryptophan indoles increase after gastric bypass surgery and reduce intestinal permeability in vitro and in vivo. Neurogastroenterol Motil. 2018;30:e13178.

    Article  CAS  Google Scholar 

  129. Osadchiy V, et al. Correlation of tryptophan metabolites with connectivity of extended central reward network in healthy subjects. PLoS One. 2018;13(8):e0201772.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Yano JM, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Finch L & Tomiyama AJ. Stress-induced eating dampens physiological and behavioral stress responses. In Nutrition in the prevention and treatment of abdominal obesity. 2019. Ch. 18; p. 189–195. https://doi.org/10.1016/B978-0-12-816093-0.00015-X.

  132. van Strien T, et al. Emotional eating and food intake after sadness and joy. Appetite. 2013;66:20–5.

    Article  PubMed  Google Scholar 

  133. Tryon MS, Carter CS, DeCant R, Laugero KD. Chronic stress exposure may affect the brain’s response to high calorie food cues and predispose to obesogenic eating habits. Physiol Behav. 2013;120:233–42.

    Article  CAS  PubMed  Google Scholar 

  134. Wingenfeld K, et al. Stress reactivity and its effects on subsequent food intake in depressed and healthy women with and without adverse childhood experiences. Psychoneuroendocrinology. 2017;80:122–30.

    Article  PubMed  Google Scholar 

  135. Gluck ME, Geliebter A, Hung J, Yahav E. Cortisol, hunger, and desire to binge eat following a cold stress test in obese women with binge eating disorder. Psychosom Med. 2004;66:876–81.

    Article  CAS  PubMed  Google Scholar 

  136. Tomiyama AJ, Dallman MF, Epel ES. Comfort food is comforting to those most stressed: Evidence of the chronic stress response network in high stress women. Psychoneuroendocrinology. 2011;36:1513–9.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Dietrich A, Hollmann M, Mathar D, Villringer A, Horstmann A. Brain regulation of food craving: Relationships with weight status and eating behavior. Int J Obes. 2016;40:982–9.

    Article  CAS  Google Scholar 

  138. García-García I, et al. Reward processing in obesity, substance addiction and non-substance addiction. Obes Rev. 2014;15:853–69.

    Article  PubMed  Google Scholar 

  139. Higgs S, Spetter MS. Cognitive control of eating: The role of memory in appetite and weight gain. Curr Obes Rep. 2018;7:50–9.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Demos KE, Heatherton TF, Kelley WM. Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. J Neurosci. 2012;32:5549–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hankir MK, et al. Homeostatic, reward and executive brain functions after gastric bypass surgery. Appetite. 2020;146:104419.

    Article  PubMed  Google Scholar 

  142. Hankir MK, Seyfried F, Miras AD, Cowley MA. Brain feeding circuits after Roux-en-Y gastric bypass. Trends Endocrinol Metab. 2018;29:218–37.

    Article  CAS  PubMed  Google Scholar 

  143. Smitka K, et al. Current aspects of the role of autoantibodies directed against appetite-regulating hormones and the gut microbiome in eating disorders. Front Endocrinol. 2021;12:293.

    Article  Google Scholar 

  144. Skonieczna-Żydecka K, et al. Gut Biofactory—Neurocompetent Metabolites within the Gastrointestinal Tract. A Scoping Review. Nutrients. 2020;12(11):3369.

    Article  PubMed Central  CAS  Google Scholar 

  145. Tavares GA, et al. Early weaning leads to disruption of homeostatic and hedonic eating behaviors and modulates serotonin (5HT) and dopamine (DA) systems in male adult rats. Behav Brain Res. 2020;383:112531.

    Article  CAS  PubMed  Google Scholar 

  146. Haahr ME, et al. Central 5-HT neurotransmission modulates weight loss following gastric bypass surgery in obese individuals. J Neurosci. 2015;35:5884–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Leyrolle Q, et al. Specific gut microbial, biological, and psychiatric profiling related to binge eating disorders: A cross-sectional study in obese patients. Clin Nutr. 2021;40:2035–44.

    Article  CAS  PubMed  Google Scholar 

  148. Clarke G, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2013;18:666–73.

    Article  CAS  PubMed  Google Scholar 

  149. Rea K, Dinan TG, Cryan JF. The microbiome: A key regulator of stress and neuroinflammation. Neurobiol Stress. 2016;4:23–33.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Navarro-Tapia E, et al. Effects of microbiota imbalance in anxiety and eating disorders: Probiotics as novel therapeutic approaches. Int J Mol Sci. 2021;22:2351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yang Y, Shields GS, Guo C, Liu Y. Executive function performance in obesity and overweight individuals: A meta-analysis and review. Neurosci Biobehav Rev. 2018;84:225–44.

    Article  PubMed  Google Scholar 

  152. Monica D, et al. Assessment of executive functions in obese individuals with binge eating disorder. Braz J Psychiatry. 2010;32:381–8.

    Article  Google Scholar 

  153. Manasse SM, et al. Executive functioning in overweight individuals with and without loss-of-control eating. Eur Eat Disord Rev. 2014;22:373–7.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Han JE, Boachie N, Garcia-Garcia I, Michaud A, Dagher A. Neural correlates of dietary self-control in healthy adults: A meta-analysis of functional brain imaging studies. Physiol Behav. 2018;192:98–108.

    Article  CAS  PubMed  Google Scholar 

  155. Lavagnino L, Arnone D, Cao B, Soares JC, Selvaraj S. Inhibitory control in obesity and binge eating disorder: A systematic review and meta-analysis of neurocognitive and neuroimaging studies. Neurosci Biobehav Rev. 2016;68:714–26.

    Article  PubMed  Google Scholar 

  156. Balodis IM, Grilo CM, Potenza MN. Neurobiological features of binge eating disorder. CNS Spectr. 2015;20:557–65.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Hege MA, et al. Attentional impulsivity in binge eating disorder modulates response inhibition performance and frontal brain networks. Int J Obes. 2015;2005(39):353–60.

    Article  Google Scholar 

  158. Burger KS, Stice E. Relation of dietary restraint scores to activation of reward-related brain regions in response to food intake, anticipated intake, and food pictures. Neuroimage. 2011;55:233–9.

    Article  PubMed  Google Scholar 

  159. Coletta M, et al. Brain activation in restrained and unrestrained eaters: An fMRI study. J Abnorm Psychol. 2009;118:598–609.

    Article  PubMed  Google Scholar 

  160. DelParigi A, et al. Successful dieters have increased neural activity in cortical areas involved in the control of behavior. Int J Obes. 2007;31:440–8.

    Article  CAS  Google Scholar 

  161. Hollmann M, et al. Neural correlates of the volitional regulation of the desire for food. Int J Obes. 2012;36:648–55.

    Article  CAS  Google Scholar 

  162. Born JM, et al. Differences between liking and wanting signals in the human brain and relations with cognitive dietary restraint and body mass index. Am J Clin Nutr. 2011;94:392–403.

    Article  CAS  PubMed  Google Scholar 

  163. Demos KE, Kelley WM, Heatherton TF. Dietary restraint violations influence reward responses in nucleus accumbens and amygdala. J Cogn Neurosci. 2011;23:1952–63.

    Article  PubMed  Google Scholar 

  164. Zoon HFA, et al. Altered neural inhibition responses to food cues after Roux-en-Y Gastric Bypass. Biol Psychol. 2018;137:34–41.

    Article  CAS  PubMed  Google Scholar 

  165. Goldman RL, et al. Executive control circuitry differentiates degree of success in weight loss following gastric-bypass surgery. Obesity. 2013;21:2189–96.

    Article  PubMed  Google Scholar 

  166. Hu Y. Laparoscopic sleeve gastrectomy improves brain connectivity in obese patients. J Neurol. 2020;10.

  167. Weygandt M, et al. Interactions between neural decision-making circuits predict long-term dietary treatment success in obesity. Neuroimage. 2019;184:520–34.

    Article  PubMed  Google Scholar 

  168. Liu L, et al. Structural changes in brain regions involved in executive-control and self-referential processing after sleeve gastrectomy in obese patients. Brain Imaging Behav. 2019;13(3):830–40.

    Article  PubMed  Google Scholar 

  169. Hu Y, et al. Brain connectivity, and hormonal and behavioral correlates of sustained weight loss in obese patients after laparoscopic sleeve gastrectomy. Cereb Cortex. 2021;31:1284–95.

    Article  PubMed  Google Scholar 

  170. Prinz P, et al. Plasma bile acids show a positive correlation with body mass index and are negatively associated with cognitive restraint of eating in obese patients. Front Neurosci. 2015;9:199.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Delzenne NM, Cani PD, Daubioul C, Neyrinck AM. Impact of inulin and oligofructose on gastrointestinal peptides. Br J Nutr. 2005;93:S157–61.

    Article  CAS  PubMed  Google Scholar 

  172. Delbès A-S, et al. Prebiotics supplementation impact on the reinforcing and motivational aspect of feeding. Front Endocrinol. 2018;9:273.

    Article  Google Scholar 

  173. Association AP. Feeding and eating disorders: DSM-5® selections. American Psychiatric Pub; 2015.

  174. Sarwer DB, Allison KC, Bailer BA, Faulconbridge LF. Psychosocial characteristics of bariatric surgery candidates. The ASMBS textbook of bariatric surgery: Volume 2: Integrated Health 2014. pp. 3–9.

  175. Marek RJ, Ben-Porath YS, Ashton K, Heinberg LJ. Minnesota multiphasic personality inventory-2 restructured form (MMPI-2-RF) scale score differences in bariatric surgery candidates diagnosed with binge eating disorder versus BMI-matched controls. Int J Eat Disord. 2014;47:315–9.

    Article  PubMed  Google Scholar 

  176. Mitchell JE, et al. Long-term follow-up of patients’ status after gastric bypass. Obes Surg. 2001;11:464–8.

    Article  CAS  PubMed  Google Scholar 

  177. Conceição EM, Goldschmidt A. Disordered eating after bariatric surgery: Clinical aspects, impact on outcomes, and intervention strategies. Curr Opin Psychiatry. 2019;32:504–9.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Niego SH, Kofman MD, Weiss JJ, Geliebter A. Binge eating in the bariatric surgery population: A review of the literature. Int J Eat Disord. 2007;40:349–59.

    Article  PubMed  Google Scholar 

  179. White MA, Kalarchian MA, Masheb RM, Marcus MD, Grilo CM. Loss of control over eating predicts outcomes in bariatric surgery patients: A prospective, 24-month follow-up study. J Clin Psychiatry. 2009;70:0–0.

  180. Saunders R. ‘Grazing’: A high-risk behavior. Obes Surg. 2004;14:98–102.

    Article  PubMed  Google Scholar 

  181. Lydecker JA, Ivezaj V, Grilo CM. Secretive eating and binge eating following bariatric surgery. Int J Eat Disord. 2019;52:935–40.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Conceição EM, et al. Picking and nibbling: Frequency and associated clinical features in bulimia nervosa, anorexia nervosa and binge eating disorder. Int J Eat Disord. 2013;46:815–8.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Conceição EM, et al. Stability of problematic eating behaviors and weight loss trajectories after bariatric surgery: A longitudinal observational study. Surg Obes Relat Dis. 2017;13:1063–70.

    Article  PubMed  Google Scholar 

  184. Allison KC, et al. Night eating syndrome and binge eating disorder among persons seeking bariatric surgery: Prevalence and related features. Obesity. 2006;14:77S-82S.

    Article  PubMed  Google Scholar 

  185. de Zwaan M, Marschollek M, Allison KC. The night eating syndrome (NES) in bariatric surgery patients. Eur Eat Disord Rev. 2015;23:426–34.

    Article  PubMed  Google Scholar 

  186. Brode CS, Mitchell JE. Problematic eating behaviors and eating disorders associated with bariatric surgery. Psychiatr Clin North Am. 2019;42:287–97.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Brown RM. Addiction-like synaptic impairments in diet-induced obesity. Biol. Psychiatry. 2015;81:797-806. https://doi.org/10.1016/j.biopsych.2015.11.019.

  188. Sevinçer GM. Food addiction and the outcome of bariatric surgery at 1-year: Prospective observational study. Psychiatry Res. 2016;6.

Download references

Funding

EGH is supported by a Melbourne Research Scholarship. CJF is supported by a National Health and Medical Research Council Ideas Grant (2001722). RMB is supported by ARC DECRA (DE190101244). PS is supported by a National Health and Medical Research Council Investigator Grant (1178482).

Author information

Authors and Affiliations

Authors

Contributions

EGH, PS, RMB conceived the idea and researched data for the manuscript. EGH wrote the first draft with assistance from PS and RMB. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Robyn M. Brown.

Ethics declarations

Conflicts of interest

PS reports fees from Novo Nordisk for participation in advisory boards and a lecture unrelated to the submitted work. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrero-Hreins, E., Foldi, C.J., Oldfield, B.J. et al. Gut-brain mechanisms underlying changes in disordered eating behaviour after bariatric surgery: a review. Rev Endocr Metab Disord 23, 733–751 (2022). https://doi.org/10.1007/s11154-021-09696-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-021-09696-4

Keywords

Navigation