Skip to main content
Log in

Efficient one-pot synthesis of 3-methylindole from biomass-derived glycerol with aniline over Cu/SiO2 modified with ZnO and Fe2O3 and deep insight into the mechanism

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

An efficient catalyst of Cu/SiO2 modified with ZnO and Fe2O3 was constructed for the one-pot synthesis of 3-methylindole originating from biomass-derived glycerol with aniline. The structure and property of as-prepared Cu/SiO2–ZnO–Fe2O3 composite were characterized by temperature programmed reduction of H2 (H2-TPR), X-ray diffraction (XRD), transmission electron microscope (TEM), temperature programmed desorption (TPD) of NH3 and CO2, inductively coupled plasma (ICP) emission spectroscopy, thermogravimetric and differential thermal analysis (TG–DTA). The results indicated that the interaction between copper and support was improved after adding ZnO to Cu/SiO2, as a result, Cu particles could be firmly anchored on the surface of SiO2–ZnO, which not only increased the dispersion of active component but also inhibited the aggregation or sintering of copper particles effectively. Meanwhile, the acid or base sites on the ZnO modified Cu/SiO2 catalyst significantly increased, which was beneficial to the hydrogenolysis of glycerol to acetol and 1,2-propanediol and promoted the synthesis of 3-methylindole. The introduction of Fe2O3 to Cu/SiO2–ZnO could promote the reduction of CuO and decrease the acidity of the catalyst, thereby the activity and stability of the catalyst were further improved. Under the optimized ZnO or Fe2O3 content of 0.100 or 0.030 mmol/g-SiO2, Cu/SiO2–ZnO–Fe2O3 exhibited excellent catalytic activity and long-term stability, which the yield of 3-methylindole was up to 73% and it was still more than 68% when the catalyst was reused four times. Moreover, the catalytic mechanism for the one-pot synthesis of 3-methylindole from glycerol and aniline over Cu/SiO2–ZnO–Fe2O3 was investigated in depth and a probable synthetic route was proposed based on the research of the catalytic reactions of glycerol, 1,2-propanediol or acetol with aniline as well as the hydrogenolysis of glycerol and the catalytic conversion of acetol, which both acetol and 1,2-propanediol were the intermediates for the production of 3-methylindole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. Gribble GW (2016) Indole ring synthesis: from natural products to drug discovery, 1st edn. Wiley, New York

    Google Scholar 

  2. Cho I, Jeon NJ, Kwon OK, Kim DW, Jung EH, Noh JH, Seo J, Seok SI, Park SY (2017) Indolo[3,2-b]indole-based crystalline hole-transporting material for highly efficient perovskite solar cells. Chem Sci 8(1):734–741. https://doi.org/10.1039/C6SC02832B

    Article  CAS  PubMed  Google Scholar 

  3. Sun LD, Sun Bao ZR, Sun Q, Shi L (2013) Vapor-phase synthesis of 3-methylindole from glycerol and aniline: the effect of Al2O3 promoter and the preparation method on the performance of the Cu–Al2O3/SiO2 catalyst. Reac Kinet Mech Cat 109(2):447–460. https://doi.org/10.1007/s11144-013-0551-8

    Article  CAS  Google Scholar 

  4. Howe-Grant M (1995) Kirk-Othmer encyclopedia of chemical technology, 4th edn. Wiley, New York

    Google Scholar 

  5. Nishida Y, Takeda N, Matsuno K, Miyata O, Ueda M (2018) Acylative coupling of amine and indole using chloroform as a carbonyl group. Eur J Org Chem 2018(29):3928–3935. https://doi.org/10.1002/ejoc.201800571

    Article  CAS  Google Scholar 

  6. Siwach P, Singh S, Gupta RK (2009) Vapor phase alkylation of indole with methanol and dimethylcarbonate over Ni–Mn based ferrospinels. Catal Commun 10(12):1577–1581. https://doi.org/10.1016/j.catcom.2009.04.019

    Article  CAS  Google Scholar 

  7. Beier RC, Anderson RC, Krueger NA, Edrington TS, Callaway TR, Nisbet DJ (2009) Effect of nitroethane and nitroethanol on the production of indole and 3-methylindole (skatole) from bacteria in swine feces by gas chromatography. J Environ Sci Heal B 44(6):613–620. https://doi.org/10.1080/03601230903000701

    Article  CAS  Google Scholar 

  8. Tursky M, Lorentz-Petersen LLR, Olsen LB, Madsen R (2010) Iridium- and ruthenium-catalysed synthesis of 2,3-disubstituted indoles from anilines and vicinal diols. Org Biomol Chem 8(24):5576–5582. https://doi.org/10.1039/C0OB00106F

    Article  CAS  PubMed  Google Scholar 

  9. Zhou Z, Li Y, Gong L, Meggers E (2017) Enantioselective 2-alkylation of 3-substituted indoles with dual chiral Lewis acid/hydrogen-bond-mediated catalyst. Org Lett 19(1):222–225. https://doi.org/10.1021/acs.orglett.6b03500

    Article  CAS  PubMed  Google Scholar 

  10. Deslandes B, Gariépy C, Houde A (2001) Review of microbiological and biochemical effects of skatole on animal production. Livest Prod Sci 71(2):193–200. https://doi.org/10.1016/S0301-6226(01)00189-0

    Article  Google Scholar 

  11. Hughes DT, Pelletier J, Luetje CW, Leal WS (2010) Odorant receptor from the southern house mosquito narrowly tuned to the oviposition attractant skatole. J Chem Ecol 36(8):797–800. https://doi.org/10.1007/s10886-010-9828-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Simoneau CA, Strohl AM, Ganem B (2007) One-pot synthesis of polysubstituted indoles from aliphatic nitro compounds under mild conditions. Tetrahedron Lett 48(10):1809–1811. https://doi.org/10.1016/j.tetlet.2007.01.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Robinson B (1963) The fischer indole synthesis. Chem Rev 63(4):373–401. https://doi.org/10.1021/cr60224a003

    Article  Google Scholar 

  14. Magnus P, Mitchell IS (1998) Synthesis of 3-methylindoles from N-aryl-N-(3- triisopropyl- silylpropargyl) sulfonamides. Tetrahedron Lett 39(26):4595–4598. https://doi.org/10.1016/S0040-4039(98)00847-8

    Article  CAS  Google Scholar 

  15. Llabres-Campaner PJ, Ballesteros-Garrido R, Ballesteros R, Abarca B (2017) Straight access to indoles from anilines and ethylene glycol by heterogeneous acceptorless dehydrogenative condensation. J Org Chem 83(1):521–526. https://doi.org/10.1021/acs.joc.7b02722

    Article  CAS  PubMed  Google Scholar 

  16. Jensen T, Pedersen H, Bang-Andersen B, Madsen R, Jorgensen M (2008) Palladium- catalyzed aryl amination-heck cyclization cascade: a one-flask approach to 3-substituted indoles. Angew Chem Int Ed 47(5):888–890. https://doi.org/10.1002/anie.200703763

    Article  CAS  Google Scholar 

  17. Cho CS, Kim JH, Kim TJ, Shim SC (2001) Ruthenium-catalyzed heteroannulation of anilines with alkanolammonium chlorides leading to indoles. Tetrahedron 57(16):3321–3329. https://doi.org/10.1016/S0040-4020(01)00202-2

    Article  CAS  Google Scholar 

  18. Yu J, Xu J, Yu Z, Jin Y, Li J, Lv Y (2017) A continuous-flow fischer indole synthesis of 3-methylindole in an ionic liquid. J Flow Chem 7(2):33–36. https://doi.org/10.1556/1846.2017.00004

    Article  CAS  Google Scholar 

  19. Ritter SK (2004) Biomass or bust. Chem Eng News 82(22):31–32. https://doi.org/10.1021/cen-v082n022.p031

    Article  Google Scholar 

  20. Akiyama M, Sato S, Takahashi R, Inui K, Yokota M (2009) Dehydration–hydrogenation of glycerol into 1,2-propanediol at ambient hydrogen pressure. Appl Catal A 371(1–2):60–66. https://doi.org/10.1016/j.apcata.2009.09.029

    Article  CAS  Google Scholar 

  21. Gabrysch T, Muhler M, Peng BX (2019) The kinetics of glycerol hydrodeoxygenation to 1,2-propanediol over Cu/ZrO2 in the aqueous phase. Appl Catal A 576:47–53. https://doi.org/10.1016/j.apcata.2019.03.001

    Article  CAS  Google Scholar 

  22. Xie QL, Li SS, Gong RC, Zheng GJ, Wang YL, Xu P, Duan Y, Yu SZ, Lu MZ, Ji WR, Nie Y, Ji JB (2019) Microwave-assisted catalytic dehydration of glycerol for sustainable production of acrolein over a microwave absorbing catalyst. Appl Catal B 243:455–462. https://doi.org/10.1016/j.apcatb.2018.10.058

    Article  CAS  Google Scholar 

  23. Hong CS, Chin SY, Cheng CK, Sabri MM, Chua GK (2015) Enzymatic conversion of glycerol to glyceric acid with immobilised laccase in Na-alginate matrix. Procedia Chem 16:632–639. https://doi.org/10.1016/j.proche.2015.12.102

    Article  CAS  Google Scholar 

  24. Purushothaman RKP, Haveren J, Es DS, Melián-Cabrera I, Heeres HJ (2012) The oxidative esterification of glycerol to methyl glycerate in methanol using gold on oxidic supports: an insight in product selectivity. Green Chem 14:2031–2037. https://doi.org/10.1039/C2GC35226E

    Article  Google Scholar 

  25. Aghbashlo M, Hosseinpour S, Tabatabaei M, Rastegari H, Ghaziaskar HS (2019) Multi- objective exergoeconomic and exergoenvironmental optimization of continuous synthesis of solketal through glycerolketalization with acetone in the presence of ethanol as co-solvent. Renew Energy 130:735–748. https://doi.org/10.1016/j.renene.2018.06.103

    Article  CAS  Google Scholar 

  26. Lahr DG, Shanks BH (2005) Effect of sulfur and temperature on ruthenium-catalyzed glycerol hydrogenolysis to glycols. J Catal 232(2):386–394. https://doi.org/10.1016/j.jcat.2005.03.015

    Article  CAS  Google Scholar 

  27. Sun W, Liu DY, Zhu HY, Shi L, Sun Q (2010) A new efficient approach to 3-methylindole: vapor-phase synthesis from aniline and glycerol over Cu-based catalyst. Catal Commun 12(2):147–150. https://doi.org/10.1016/j.catcom.2010.08.011

    Article  CAS  Google Scholar 

  28. Bao ZR, Cui YX, Sun P, Sun Q, Shi L (2013) Vapor-phase synthesis of 3-methylindole from glycerol and aniline over Cu/SiO2-Al2O3 catalyst modified by Co or Ni. Acta Phys Chim Sin 29(11):2444–2450. https://doi.org/10.3866/PKU.WHXB201309091

    Article  CAS  Google Scholar 

  29. Wang ZY, Li XH, Zhang Y, Shi L, Sun Q (2012) Effect of alkaline-earth metal oxides on Cu/SiO2-Al2O3 catalyst for vapor-phase synthesis of 3-methylindole from glycerol and aniline. J Chin Catal 33(7):1139–1145. https://doi.org/10.1016/S1872-2067(11)60407-5

    Article  CAS  Google Scholar 

  30. Yue Zhang, Wei Sun, Lei Shi, Qi Sun (2012) Promoting effect of ZnO or K2O on Cu/SiO2-Al2O3 catalyst for vapor-phase synthesis of 3-methylindole from glycerol and aniline. J Chin Catal 33(6):1055–1060. https://doi.org/10.3724/SP.J.1088.2012.11142

    Article  CAS  Google Scholar 

  31. Cui YX, Zhou XS, Sun Q, Shi L (2013) Vapor-phase synthesis of 3-methylindole from glycerol and aniline over zeolites-supported Cu-based catalysts. J Mol Catal A 378:238–245. https://doi.org/10.1016/j.molcata.2013.06.015

    Article  CAS  Google Scholar 

  32. Mondal S, Arifa AA, Biswas P (2017) Production of 1,2-propanediol from renewable glycerol over highly stable and efficient Cu–Zn(4:1)/MgO catalyst. Catal Lett 147(11):2783–2798. https://doi.org/10.1007/s10562-017-2187-1

    Article  CAS  Google Scholar 

  33. Yfanti VL, Lemonidou AA (2018) Mechanistic study of liquid phase glycerol hydrodeoxygenation with in situ generated hydrogen. J Catal 368:98–111. https://doi.org/10.1016/j.jcat.2018.09.036

    Article  CAS  Google Scholar 

  34. Lü W, Liu X, Liu D, Shi L, Sun Q (2009) Vapor-phase synthesis of 3-methylindole over Fe-, Co-, or Ni-promoted Ag/SiO2 catalysts. Chin J Catal 30(12):1287–1290. https://doi.org/10.1016/S1872-2067(08)60145-X

    Article  Google Scholar 

  35. Wang S, Yin KH, Zhang YC, Liu HC (2013) Glycerol hydrogenolysis to propylene glycol and ethylene glycol on zirconia supported Noble metal catalysts. ACS Catal 3(9):2112–2121. https://doi.org/10.1021/cs400486z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the National Natural Science Foundation of China (21576128, 21306073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 998 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Du, X., Ke, K. et al. Efficient one-pot synthesis of 3-methylindole from biomass-derived glycerol with aniline over Cu/SiO2 modified with ZnO and Fe2O3 and deep insight into the mechanism. Reac Kinet Mech Cat 128, 361–377 (2019). https://doi.org/10.1007/s11144-019-01638-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01638-1

Keywords

Navigation