Skip to main content
Log in

Photocatalytic discoloration of an azo-dye using LaMn0.5Ti0.5O3 double perovskite under visible light irradiation and enhancement of photocatalytic activity by using graphene

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, rare-earth perovskite-type oxides LaTiO3±δ, LaMnO3 and LaMn0.5Ti0.5O3 were prepared by the sol–gel method and tested for the photocatalytic decomposition of an azo dye, basic red 46, under visible light. The experimental results showed that the photocatalytic activity of LaMn0.5Ti0.5O3 was much higher than that of LaMnO3 and LaTiO3±δ. Then, the discoloration efficiency of basic red 46 was studied over LaMn0.5Ti0.5O3 prepared by several methods. The structure, morphology and light absorption of prepared samples were characterized by XRD, SEM and UV–vis (DRS mode) spectroscopy. The best photocatalytic performance exhibited by the LaMn0.5Ti0.5O3 prepared using the Pechini sol–gel method and its excellent activity results from narrower band-gap energy, smaller particles size and porosity structure which is capable of supporting the enhanced loading of organic contaminants on surface. In the following, graphene/LaMn0.5Ti0.5O3 nanocomposite photocatalysts were synthesized for the first time. The photocatalytic efficiency of the graphene/LaMn0.5Ti0.5O3 nanocomposites was higher than that of pristine LaMn0.5Ti0.5O3 and graphene(50%wt)/LaMn0.5Ti0.5O3 had the greatest photocatalytic activity (degradation 90% after 5 h). The excellent photocatalytic activity can be attributed to the high separation efficiency of photoinduced electron–hole pairs resulting from the excellent conductivity of in graphene/LaMn0.5Ti0.5O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Khanna A, Shetty VK (2014) Sol Energy 99:67–76

    Article  CAS  Google Scholar 

  2. Gnanamani A, Bhaskar M, Ganga R, Sekaran G, Sadulla S (2004) Chemosphere 56(9):833–841

    Article  CAS  PubMed  Google Scholar 

  3. Pare B, Jonnalagadda S, Tomar H, Singh P, Bhagwat V (2008) Desalination 232(1):80–90

    Article  CAS  Google Scholar 

  4. Daneshvar N, Salari D, Khataee A (2003) J Photochem Photobiol A 157(1):111–116

    Article  CAS  Google Scholar 

  5. Ku Y, Wang L-C, Ma C-M, Chou Y-C (2011) Water Air Soil Pollut 215(1–4):97–103

    Article  CAS  Google Scholar 

  6. Liu D-R, Jiang Y-S, Gao G-M (2011) Chemosphere 83(11):1546–1552

    Article  CAS  PubMed  Google Scholar 

  7. Rasoulifard MH, Marandi R, Majidzadeh H, Bagheri I (2011) Environ Eng Sci 28(3):229–235

    Article  CAS  Google Scholar 

  8. Rasoulifard M, Dorraji MS, Taherkhani S (2016) J Taiwan Inst Chem E 58:324–332

    Article  CAS  Google Scholar 

  9. Shifu C, Lei C, Shen G, Gengyu C (2005) Chem Phys Lett 413(4):404–409

    Article  CAS  Google Scholar 

  10. Fakhouri H, Pulpytel J, Smith W, Zolfaghari A, Mortaheb HR, Meshkini F, Jafari R, Sutter E, Arefi-Khonsari F (2014) Appl Catal B 144:12–21

    Article  CAS  Google Scholar 

  11. Bae SW, Ji SM, Hong SJ, Jang JW, Lee JS (2009) Int J Hydrog Energy 34(8):3243–3249

    Article  CAS  Google Scholar 

  12. Fu S, Niu H, Tao Z, Song J, Mao C, Zhang S, Chen C, Wang D (2013) J Alloys Compd 576:5–12

    Article  CAS  Google Scholar 

  13. Jie H, Jie M, Jiahua M, Huang H (2014) J Rare Earths 32(12):1126–1134

    Article  CAS  Google Scholar 

  14. Pena M, Fierro J (2001) Chem Rev 101(7):1981–2018

    Article  CAS  PubMed  Google Scholar 

  15. Li D, Zheng J, Zou Z (2006) J Phys Chem Solids 67(4):801–806

    Article  CAS  Google Scholar 

  16. Abazari R, Sanati S, Saghatforoush LA (2014) Mater Sci Semicond Process 25:301–306

    Article  CAS  Google Scholar 

  17. Torres-Martínez LM, Cruz-López A, Juárez-Ramírez I, Meza-de la Rosa ME (2009) J Hazard Mater 165(1):774–779

    Article  CAS  PubMed  Google Scholar 

  18. Hu J, Ma J, Wang L, Huang H (2014) J Alloys Compd 583:539–545

    Article  CAS  Google Scholar 

  19. Liang D, Cui C, Hu H, Wang Y, Xu S, Ying B, Li P, Lu B, Shen H (2014) J Alloys Compd 582:236–240

    Article  CAS  Google Scholar 

  20. Yoo D-H, Cuong TV, Pham VH, Chung JS, Khoa NT, Kim EJ, Hahn SH (2011) Curr Appl Phys 11(3):805–808

    Article  Google Scholar 

  21. Wu C, Zhang Y, Li S, Zheng H, Wang H, Liu J, Li K, Yan H (2011) Chem Eng J 178:468–474

    Article  CAS  Google Scholar 

  22. Zhang D, Pu X, Ding G, Shao X, Gao Y, Liu J, Gao M, Li Y (2013) J Alloys Compd 572:199–204

    Article  CAS  Google Scholar 

  23. Low J, Yu J, Li Q, Cheng B (2014) Phys Chem Chem Phys 16(3):1111–1120

    Article  CAS  PubMed  Google Scholar 

  24. Hu R, Li C, Wang X, Sun Y, Jia H, Su H, Zhang Y (2012) Catal Commun 29:35–39

    Article  CAS  Google Scholar 

  25. Hosseini SA, Salari D, Niaei A, Oskoui SA (2013) J Ind Eng Chem 19(6):1903–1909

    Article  CAS  Google Scholar 

  26. Nakhostin Panahi P, Salari D, Tseng H-H, Niaei A, Mousavi SM (2017) Environ Technol 38(15):1852–1861

    Article  CAS  PubMed  Google Scholar 

  27. Panahi PN, Niaei A, Salari D, Mousavi SM, Delahay G (2015) J Environ Sci 35:135–143

    Article  CAS  Google Scholar 

  28. Al-Areqi NA, Al-Alas A, Al-Kamali AS, Ghaleb KA, Al-Mureish K (2014) J Mol Catal A 381:1–8

    Article  CAS  Google Scholar 

  29. Susanti YD, Afifah N, Saleh R (2017) Multifunctional photocatalytic degradation of methylene blue using LaMnO3/Fe3O4 nanocomposite on different types of graphene. J Phys 1:012021

    Google Scholar 

  30. Feraru S, Borhan A, Samoila P, Mita C, Cucu-Man S, Iordan A, Palamaru M (2015) J Photochem Photobiol A 307:1–8

    Article  CAS  Google Scholar 

  31. Hu J, Ma J, Wang L, Huang H, Ma L (2014) Powder Technol 254:556–562

    Article  CAS  Google Scholar 

  32. Wei Z-X, Xiao C-M, Zeng W-W, Liu J-P (2013) J Mol Catal A 370:35–43

    Article  CAS  Google Scholar 

  33. Abbasi A, Hamadanian M, Salavati-Niasari M, Mortazavi-Derazkola S (2017) J Colloid Interface Sci 500:276–284

    Article  CAS  PubMed  Google Scholar 

  34. Wei Y, Zhang X, Xu J, Wang J, Huang Y, Fan L, Wu J (2014) Appl Catal B 147:920–928

    Article  CAS  Google Scholar 

  35. Wang L, Pang Q, Song Q, Pan X, Jia L (2015) Fuel 140:267–274

    Article  CAS  Google Scholar 

  36. Wei Z-X, Ye S-B, Wang X-M (2016) Ceram Int 42(7):9196–9203

    Article  CAS  Google Scholar 

  37. Yoshino M, Kakihana M, Cho WS, Kato H, Kudo A (2002) Chem Mater 14(8):3369–3376

    Article  CAS  Google Scholar 

  38. Yoshioka K, Petrykin V, Kakihana M, Kato H, Kudo A (2005) J Catal 232(1):102–107

    Article  CAS  Google Scholar 

  39. Yang S, Gong Y, Zhang J, Zhan L, Ma L, Fang Z, Vajtai R, Wang X, Ajayan PM (2013) Adv Mater 25(17):2452–2456

    Article  CAS  PubMed  Google Scholar 

  40. Reddy J, Kurra S, Guje R, Palla S, Veldurthi NK, Ravi G, Vithal M (2015) Ceram Int 41(2):2869–2875

    Article  CAS  Google Scholar 

  41. Wang X, Zhi L, Müllen K (2008) Nano Lett 8(1):323–327

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from University of Zanjan and Iranian Nanotechnology Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvaneh Nakhostin Panahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1346 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhostin Panahi, P., Rasoulifard, M.H. & Hekmati, F. Photocatalytic discoloration of an azo-dye using LaMn0.5Ti0.5O3 double perovskite under visible light irradiation and enhancement of photocatalytic activity by using graphene. Reac Kinet Mech Cat 128, 539–554 (2019). https://doi.org/10.1007/s11144-019-01629-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01629-2

Keywords

Navigation