Skip to main content
Log in

Catalytic N2O decomposition over La(Sr)FeO3 perovskites

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, La1−xSrxFeO3 perovskites with x = 0, 0.25, 0.50, 0.75 and 1.0 have been synthesized via a sol gel auto-combustion method using glycine as fuel. All materials were characterized with x-ray powder diffraction (XRD), N2 porosimetry, scanning electron microscopy (SEM) and O2 Temperature programmed adsorption- desorption (O2/TPA-D). The catalytic activity of perovskites was tested for the decomposition of N2O to N2 and O2 as a probe reaction in a bench scale plug flow reactor. The most active catalyst was La0.75Sr0.25FeO3 and the catalytic activity is strongly correlated to the amount of the reverse oxygen uptake from the perovskite structure. According to the N2O decomposition mechanism the slow and rate determining step was found to be the dissociation of N2O adsorbed on the surface of catalyst as \({\text{N}}_{ 2} {\text{O}}^{ - }_{{({\text{ads}})}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pérez-Ramírez J (2007) Prospects of N2O emission regulations in the European fertilizer industry. Appl Catal B 70(1):31–35. https://doi.org/10.1016/j.apcatb.2005.11.019

    Article  CAS  Google Scholar 

  2. Kondratenko EV, Kondratenko VA, Santiago M, Pérez-Ramírez J (2008) Mechanistic origin of the different activity of Rh-ZSM-5 and Fe-ZSM-5 in N2O decomposition. J Catal 256(2):248–258. https://doi.org/10.1016/j.jcat.2008.03.016

    Article  CAS  Google Scholar 

  3. Zou W, Xie P, Hua W, Wang Y, Kong D, Yue Y, Ma Z, Yang W, Gao Z (2014) Catalytic decomposition of N2O over Cu-ZSM-5 nanosheets. J Mol Catal A 394:83–88. https://doi.org/10.1016/j.molcata.2014.07.004

    Article  CAS  Google Scholar 

  4. Xie P, Ma Z, Zhou H, Huang C, Yue Y, Shen W, Xu H, Hua W, Gao Z (2014) Catalytic decomposition of N2O over Cu-ZSM-11 catalysts. Microporous Mesoporous Mater 191:112–117. https://doi.org/10.1016/j.micromeso.2014.02.044

    Article  CAS  Google Scholar 

  5. Russo N, Fino D, Saracco G, Specchia V (2007) N2O catalytic decomposition over various spinel-type oxides. Catal Today 119(1):228–232. https://doi.org/10.1016/j.cattod.2006.08.012

    Article  CAS  Google Scholar 

  6. Maniak G, Stelmachowski P, Stanek JJ, Kotarba A, Sojka Z (2011) Catalytic properties in N2O decomposition of mixed cobalt-iron spinels. Catal Commun 15(1):127–131. https://doi.org/10.1016/j.catcom.2011.08.027

    Article  CAS  Google Scholar 

  7. Franken T, Palkovits R (2015) Investigation of potassium doped mixed spinels CuxCo3−xO4 as catalysts for an efficient N2O decomposition in real reaction conditions. Appl Catal B 176–177:298–305. https://doi.org/10.1016/j.apcatb.2015.04.002

    Article  CAS  Google Scholar 

  8. Dou Z, Zhang HJ, Pan Y-F, Xu X-F (2014) Catalytic decomposition of N2O over potassium-modified Cu-Co spinel oxides. J Fuel Chem Technol 42(2):238–245. https://doi.org/10.1016/S1872-5813(14)60016-5

    Article  CAS  Google Scholar 

  9. Stelmachowski P, Maniak G, Kotarba A, Sojka Z (2009) Strong electronic promotion of Co3O4 towards N2O decomposition by surface alkali dopants. Catal Commun 10(7):1062–1065. https://doi.org/10.1016/j.catcom.2008.12.057

    Article  CAS  Google Scholar 

  10. Asano K, Ohnishi C, Iwamoto S, Shioya Y, Inoue M (2008) Potassium-doped Co3O4 catalyst for direct decomposition of N2O. Appl Catal B 78(3):242–249. https://doi.org/10.1016/j.apcatb.2007.09.016

    Article  CAS  Google Scholar 

  11. Yan L, Zhang X, Ren T, Zhang H, Wang X, Suo J (2002) Superior performance of nano-Au supported over Co3O4 catalyst in direct N2O decomposition. Chem Commun 8:860–861. https://doi.org/10.1039/B201237E

    Article  Google Scholar 

  12. Xue L, Zhang C, He H, Teraoka Y (2007) Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst. Appl Catal B 75(3):167–174. https://doi.org/10.1016/j.apcatb.2007.04.013

    Article  CAS  Google Scholar 

  13. Royer S, Duprez D, Can F, Courtois X, Batiot-Dupeyrat C, Laassiri S, Alamdari H (2014) Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality. Chem Rev 114(20):10292–10368. https://doi.org/10.1021/cr500032a

    Article  CAS  PubMed  Google Scholar 

  14. Moure C, Peña O (2015) Recent advances in perovskites: processing and properties. Prog Solid State Chem 43(4):123–148. https://doi.org/10.1016/j.progsolidstchem.2015.09.001

    Article  CAS  Google Scholar 

  15. Yasutake T, Hua-Min Z, Shoichi F, Noboru Y (1985) Oxygen permeation through perovskite-type oxides. Chem Lett 14(11):1743–1746. https://doi.org/10.1246/cl.1985.1743

    Article  Google Scholar 

  16. Ladavos A, Pomonis P (2015) Methane combustion on perovskites. In: Granger P, Parvulescu VI, Parvulescu VI, Prellier W (eds) Perovskites and related mixed oxides concepts and applications. Wiley, Weinheim, pp 367–388

    Chapter  Google Scholar 

  17. Leontiou AA, Ladavos AK, Bakas TV, Vaimakis TC, Pomonis PJ (2003) Reverse uptake of oxygen from La1−xSrx (Fe3+/Fe4+)O3 ± δ perovskite-type mixed oxides (x = 0.00, 0.15, 0.30, 0.40, 0.60, 0.70, 0.80, 0.90). Appl Catal A 241(1):143–154. https://doi.org/10.1016/S0926-860X(02)00458-1

    Article  CAS  Google Scholar 

  18. Wu Y, Cordier C, Berrier E, Nuns N, Dujardin C, Granger P (2013) Surface reconstructions of LaCo1−xFexO3 at high temperature during N2O decomposition in realistic exhaust gas composition: impact on the catalytic properties. Appl Catal B 140–141:151–163. https://doi.org/10.1016/j.apcatb.2013.04.002

    Article  CAS  Google Scholar 

  19. Wu Y, Ni X, Beaurain A, Dujardin C, Granger P (2012) Stoichiometric and non-stoichiometric perovskite-based catalysts: consequences on surface properties and on catalytic performances in the decomposition of N2O from nitric acid plants. Appl Catal B 125:149–157. https://doi.org/10.1016/j.apcatb.2012.05.033

    Article  CAS  Google Scholar 

  20. Russo N, Mescia D, Fino D, Saracco G, Specchia V (2007) N2O decomposition over perovskite catalysts. Ind Eng Chem Res 46(12):4226–4231. https://doi.org/10.1021/ie0612008

    Article  CAS  Google Scholar 

  21. Dacquin JP, Lancelot C, Dujardin C, Da Costa P, Djega-Mariadassou G, Beaunier P, Kaliaguine S, Vaudreuil S, Royer S, Granger P (2009) Influence of preparation methods of LaCoO3 on the catalytic performances in the decomposition of N2O. Appl Catal B 91(3):596–604. https://doi.org/10.1016/j.apcatb.2009.06.032

    Article  CAS  Google Scholar 

  22. Leontiou AA, Ladavos AK, Pomonis PJ (2003) Catalytic NO reduction with CO on La1−xSrx(Fe3+/Fe4+)O3±δ perovskite-type mixed oxides (x = 0.00, 0.15, 0.30, 0.40, 0.60, 0.70, 0.80, and 0.90). Appl Catal A 241(1):133–141. https://doi.org/10.1016/S0926-860X(02)00457-X

    Article  CAS  Google Scholar 

  23. Belessi VC, Costa CN, Bakas TV, Anastasiadou T, Pomonis PJ, Efstathiou AM (2000) Catalytic behavior of La–Sr−Ce–Fe–O mixed oxidic/perovskitic systems for the NO + CO and NO + CH4 + O2 (lean-NOx) reactions. Catal Today 59(3):347–363. https://doi.org/10.1016/S0920-5861(00)00300-X

    Article  CAS  Google Scholar 

  24. Stathopoulos VN, Belessi VC, Bakas TV, Neophytides SG, Costa CN, Pomonis PJ, Efstathiou AM (2009) Comparative study of La–Sr–Fe–O perovskite-type oxides prepared by ceramic and surfactant methods over the CH4 and H2 lean-deNOx. Appl Catal B 93(1):1–11. https://doi.org/10.1016/j.apcatb.2009.09.003

    Article  CAS  Google Scholar 

  25. Gosavi PV, Biniwale RB (2010) Pure phase LaFeO3 perovskite with improved surface area synthesized using different routes and its characterization. Mater Chem Phys 119(1):324–329. https://doi.org/10.1016/j.matchemphys.2009.09.005

    Article  CAS  Google Scholar 

  26. Tang P, Tong Y, Chen H, Cao F, Pan G (2013) Microwave-assisted synthesis of nanoparticulate perovskite LaFeO3 as a high active visible-light photocatalyst. Curr Appl Phys 13(2):340–343. https://doi.org/10.1016/j.cap.2012.08.006

    Article  Google Scholar 

  27. Del Toro R, Hernández P, Díaz Y, Brito JL (2013) Synthesis of La0.8Sr0.2FeO3 perovskites nanocrystals by Pechini sol–gel method. Mater Lett 107:231–234. https://doi.org/10.1016/j.matlet.2013.05.139

    Article  CAS  Google Scholar 

  28. Kapteijn F, Rodriguez-Mirasol J, Moulijn JA (1996) Heterogeneous catalytic decomposition of nitrous oxide. Appl Catal B 9(1):25–64. https://doi.org/10.1016/0926-3373(96)90072-7

    Article  CAS  Google Scholar 

  29. Winter ERS (1970) The decomposition of nitrous oxide on metallic oxides Part II. J Catal 19(1):32–40. https://doi.org/10.1016/0021-9517(70)90293-9

    Article  CAS  Google Scholar 

  30. Ivanov DV, Pinaeva LG, Isupova LA, Nadeev AN, Prosvirin IP, Dovlitova LS (2011) Insights into the reactivity of La1-xSrxMnO3 (x = 0 ÷ 0.7) in high temperature N2O decomposition. Catal Lett 141(2):322–331

    Article  CAS  Google Scholar 

  31. Ivanov DV, Sadovskaya EM, Pinaeva LG, Isupova LA (2009) Influence of oxygen mobility on catalytic activity of La–Sr–Mn–O composites in the reaction of high temperature N2O decomposition. J Catal 267(1):5–13. https://doi.org/10.1016/j.jcat.2009.07.005

    Article  CAS  Google Scholar 

  32. Ladavos AJ, Pomonis J (1991) Comparative study of the solid-state and catalytic properties of La2−x SrxNiO perovskites (x = 0.00–1.50) prepared by the nitrate and citrate methods. J Chem Soc, Faraday Trans 87(19):3291. https://doi.org/10.1039/ft9918703291

    Article  CAS  Google Scholar 

  33. Alini S, Basile F, Blasioli S, Rinaldi C, Vaccari A (2007) Development of new catalysts for N2O-decomposition from adipic acid plant. Appl Catal B 70(1):323–329. https://doi.org/10.1016/j.apcatb.2005.12.031

    Article  CAS  Google Scholar 

  34. Kumar S, Teraoka Y, Joshi AG, Rayalu S, Labhsetwar N (2011) Ag promoted La0.8Ba0.2MnO3 type perovskite catalyst for N2O decomposition in the presence of O2, NO and H2O. J Mol Catal A 348(1):42–54. https://doi.org/10.1016/j.molcata.2011.07.017

    Article  CAS  Google Scholar 

  35. Kumar S, Vinu A, Subrt J, Bakardjieva S, Rayalu S, Teraoka Y, Labhsetwar N (2012) Catalytic N2O decomposition on Pr0.8Ba0.2MnO3 type perovskite catalyst for industrial emission control. Catal Today 198(1):125–132. https://doi.org/10.1016/j.cattod.2012.06.015

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Margellou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 607 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Margellou, A.G., Vaimakis, T.C., Pomonis, P.J. et al. Catalytic N2O decomposition over La(Sr)FeO3 perovskites. Reac Kinet Mech Cat 127, 825–838 (2019). https://doi.org/10.1007/s11144-019-01608-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01608-7

Keywords

Navigation