Skip to main content
Log in

Reflection and Transmission of a Polarized Vortex Beam by an Inhomogeneous Anisotropic Plane Layer

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We consider oblique incidence of a vortex polarized beam on an inhomogeneous anisotropic plane layer of an artificial metamaterial. A matrix model of beam reflection from the layer boundaries and of its propagation in an inhomogeneous anisotropic medium is developed on the basis of the classical equations of electrodynamics. Using the forward Fourier transform, the beam is represented as a set of plane monochromatic waves, which have different directions of the wave vector and different directions and amplitudes of the electric fields. The obtained matrix solution allows one to calculate projections of the vectors of the electromagnetic wave inside an inhomogeneous anisotropic medium. The reflection and transmission matrices for an inhomogeneous anisotropic layer are found for the plane waves which have different propagation directions and constitute the beam. The reflected beam is reconstructed by means of the inverse Fourier transform. The distributions of the components of the electric field over the cross section of the reflected beam at oblique incidence and the phases of these components are calculated. The cross correlation functions are calculated for the components of the electric field of the beam. The Fourier series of the cross correlation function shows that components with a variation of the topological charge by ±1 appear in the reflected beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. A. Beth, Phys. Rev., 50, No. 2, 115–125 (1936). https://doi.org/https://doi.org/10.1103/PhysRev.50.115

    Article  ADS  Google Scholar 

  2. D. G. Grier, Nature, 424, No. 6950, 810–816 (2003). https://doi.org/https://doi.org/10.1038/nature01935

    Article  ADS  Google Scholar 

  3. A. M.Yao and M. J.Padgett, Adv. Opt. Photon., 3, No. 2, 161–204 (2011). https://doi.org/https://doi.org/10.1364/AOP.3.000161

    Article  Google Scholar 

  4. F.Tamburini, G. Anzolin, G.Umbriaco, et al., Phys. Rev. Lett., 97, No. 16. 163903 (2006). https://doi.org/10.1103/PhysRevLett.97.163903

  5. V. D.Paranin, S.V. Karpeev, and A.P. Krasnov, Komp. Optika, 39, No. 5, 644–653 (2015). https://doi.org/10.18287/0134-2452-2015-39-5-644-653

  6. S. Syubaev, A. Zhizhchenko, A.Kuchmizhak, et al., Opt. Express., 25, No. 9, 10214–10223 (2017). https://doi.org/10.1364/OE.25.010214

  7. K. Sasaki, M.Koshioka, H. Misawa, et al., Opt. Lett., 16, No. 19, 1463–1465 (1991). https://doi.org/https://doi.org/10.1364/OL.16.001463

    Article  ADS  Google Scholar 

  8. E. Higurashi, H. Ukita, H.Tanaka, and O.Ohguchi, Appl. Phys. Lett., 64, 2209–2210 (1994). https://doi.org/https://doi.org/10.1063/1.111675

    Article  ADS  Google Scholar 

  9. K. Ladavac and D. G. Grier, Opt. Express, 12, No. 6, 1144–1149 (2004). https://doi.org/https://doi.org/10.1364/OPEX.12.001144

    Article  ADS  Google Scholar 

  10. V.A. Soifer, O.Korotkova, S.N.Khonina, and E.A. Shchepakina, Computer Opt., 40, No. 5, 605–624 (2016). https://doi.org/10.18287/2412-6179-2016-40-5-605-624

  11. G.Ruffato, M.Massari, and F.Romanato, Light: Sci. Appl., 8, 113 (2019). https://doi.org/https://doi.org/10.1038/s41377-019-0222-2

    Article  Google Scholar 

  12. M. Born and E.Wolf, Principles of Optics, Pergamon, New York (1980).

    MATH  Google Scholar 

  13. F. I. Fedorov, Optics of Anisotropic Media [in Russian], URSS Editorial, Moscow (2004).

    Google Scholar 

  14. S. N.Khonina, S. V.Karpeev, S.V.Alferov, and V. A. Soifer, J. Opt., 17, No. 6, Art. no. 065001 (2015). https://doi.org/10.1088/2040-8978/17/6/065001

  15. S. Chen, F. Fan, Sh. Chang, et al., Opt. Express, 22, No. 6, 6313–6321 (2014). https://doi.org/https://doi.org/10.1364/OE.22.006313

    Article  ADS  Google Scholar 

  16. J. -H.Tan, Y. -F.Li, B. -J.Zhu, et al., Opt. Express, 27, No. 21, 29676–29684 (2019). https://doi.org/10.1364/OE.27.029676

  17. N. M. Moiseeva and A. V. Moiseev, Komp. Optika, 42, No. 3, 354–361 (2018). https://doi.org/10.18287/2412-6179-2018-42-3-354-361

  18. N. Moiseeva, in: 2020 Int. Conf. on Information Technology and Nanotechnology (ITNT), May 26–29, 2020, Samara, Russia, p. 1–5. https://doi.org/10.1109/ITNT49337.2020.9253328

  19. V. V.Kotlyar and A. A.Kovalev, Vortex Laser Beams [in Russian], Novaya Tekhnika, Samara, Russia (2012).

  20. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, North-Holland, Amsterdam (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Moiseeva.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, No. 4, pp. 301–313, April 2022. Russian https://doi.org/10.52452/00213462_2022_65_04_301

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseeva, N.M. Reflection and Transmission of a Polarized Vortex Beam by an Inhomogeneous Anisotropic Plane Layer. Radiophys Quantum El 65, 275–286 (2022). https://doi.org/10.1007/s11141-023-10211-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10211-9

Navigation