Skip to main content
Log in

Trajectory Analysis in a Gyrotron Electron–Optical System with Allowance for the Cathode Surface Roughness

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We propose a method for considering the spread of initial electron velocities caused by the roughness of the cathode surface while performing a three-dimensional trajectory analysis in the gyrotron electron–optical system. The effect of the size of roughness on the velocity characteristics of the electron beam entering the gyrotron cavity with a frequency of 74.2 GHz and an output power of approximately 100 kW was determined in the simulations. Comparison of simulation data with experimental results showed that the average size of cathode inhomogeneities for this gyrotron is approximately 14 μm for the model of a cathode with regular hemispheres on its surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.G.Litvak, G.G.Denisov, V. E.Myasnikov, et al., J. Infrared Millim. Terahertz Waves, 32, No. 3, 337–342 (2011). https://doi.org/10.1007/s10762-010-9743-8

  2. M. Thumm, J. Infrared Millim. Terahertz Waves, 41, No. 1, 1–140 (2020). https://doi.org/10.1007/s10762-019-00631-y

    Article  MathSciNet  Google Scholar 

  3. G. S.Nusinovich, Introduction to Physics of Gyrotons, Johns Hopkins Univ. Press, Baltimore (2004).

    Book  Google Scholar 

  4. A. L. Gol’denberg and M. I.Petelin, Radiophys. Quantum Electron., 16, No. 1, 106–111 (1973). https://doi.org/10.1007/BF01080801

  5. Sh. E.Tsimring, Radiophys. Quantum Electron., 15, No. 8, 952–961 (1972). https://doi.org/10.1007/BF01030951

    Article  ADS  Google Scholar 

  6. Sh. E.Tsimring, Electron Beams and Microwave Vacuum Electronics, John Wiley & Sons, Hoboken (2007).

    Google Scholar 

  7. M.Yu.Glyavin, A.N.Kuftin, N.P.Venediktov, et al., Int. J. Infrared Millim. Waves, 18, No. 11, 2137–2146 (1997). https://doi.org/10.1007/BF02678256

    Article  ADS  Google Scholar 

  8. R. L. Ives, P.Borchard, G. Collins, et al., IEEE Trans. Plasma Sci., 36, No. 3, 620–630 (2008). https://doi.org/10.1109/TPS.2008.917529

    Article  ADS  Google Scholar 

  9. O. I. Louksha, B. Piosczyk, G. G. Sominski, et al., IEEE Trans. Plasma Sci., 34, No. 3, 502–511 (2006). https://doi.org/10.1109/TPS.2006.875779

    Article  ADS  Google Scholar 

  10. J. Zhang, S. Illy, I.Gr.Pagonakis, et al., IEEE Trans. Electron Dev., 64, No. 3, 1315–1322 (2017). https://doi.org/10.1109/TED.2017.2655147

  11. O. I. Louksha and P. A.Trofimov, Tech. Phys., 63, No. 4, 598–604 (2018). https://doi.org/10.1134/S106378421804014X

    Article  Google Scholar 

  12. K. A. Leshcheva and V. N. Manuilov, Usp. Prikl. Fiz ., 7, No. 3, 298–308 (2019).

    Google Scholar 

  13. O. I. Louksha, B. Piosczyk, G. G. Sominski, et al., Radiophys. Quantum Electron., 49, No. 10, 793–798 (2006). https://doi.org/10.1007/s11141-006-0114-1

    Article  ADS  Google Scholar 

  14. E. G.Avdoshin, L.V.Nikolaev, I. N. Platonov, and Sh. E.Tsimring, Radiophys. Quantum Electron., 16, No. 4, 461–466 (1973). https://doi.org/10.1007/BF01030896

    Article  ADS  Google Scholar 

  15. Y. Y. Lau, J. Appl. Phys., 61, No. 1, 36–44 (1987). https://doi.org/10.1063/1.338833

    Article  ADS  Google Scholar 

  16. V. K. Lygin, Int. J. Infrared Millim. Waves, 16, No. 2, 363–376 (1995). https://doi.org/10.1007/BF02096323

    Article  ADS  Google Scholar 

  17. V. E. Zapevalov, S.Yu.Kornishin, A.V.Kotov, et al., Radiophys. Quantum Electron., 53, No. 4, 229–236 (2010). https://doi.org/10.1007/s11141-010-9221-0

  18. J. Zhang, S. Illy, I.Gr.Pagonakis, et al., Nucl. Fusion, 56, No. 2, 026002 (2016). https://doi.org/10.1088/0029-5515/56/2/026002

  19. https://www.3ds.com/products-services/simulia/products/cst-studio-suite/

  20. D. V. Kas’yanenko, O. I. Louksha, B. Piosczyk, et al., Radiophys. Quantum Electron., 47, Nos. 5–6, 414–420 (2004). https://doi.org/10.1023/B:RAQE.0000046315.10190.1c

  21. O. I. Louksha, G. G. Sominski, A.V.Arkhipov, et al., IEEE Trans. Plasma Sci., 44, No. 8, 1310–1319 (2016). https://doi.org/10.1109/TPS.2016.2590143

  22. O. I. Louksha, D. B. Samsonov, G.G. Sominskii, and S.V. Semin, Tech. Phys., 58, No. 5, 751–759 (2013). https://doi.org/10.1134/S1063784213050137

    Article  Google Scholar 

  23. A. L. Gol’denberg, V.K. Lygin, V.N.Manuilov, et al., in: A.V.Gaponov-Grekhov, ed., The Gyrotron (collected papers) [in Russian], Institute of Applied Physics of the USSR Academy of Scienses, Gorky (1981).

  24. O. I. Louksha and P. A.Trofimov, Tech. Phys., 64, No. 12, 1889–1897 (2019). https://doi.org/10.1134/S1063784219120156

    Article  Google Scholar 

  25. O. I. Luksha, Radiophys. Quantum Electron., 52, Nos. 5–6, 386–397 (2009). https://doi.org/10.1007/s11141-009-9149-4

    Article  ADS  Google Scholar 

  26. O. I. Louksha, D. B. Samsonov, G.G. Sominskii, and A.A.Tsapov, Tech. Phys., 57, No. 6, 835–839 (2012). https://doi.org/10.1134/S1063784212060187

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Louksha.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, No. 3, pp. 226–237, March 2022. Russian DOI:https://doi.org/10.52452/00213462_2022_65_03_226

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louksha, O.I., Trofimov, P.A. & Malkin, A.G. Trajectory Analysis in a Gyrotron Electron–Optical System with Allowance for the Cathode Surface Roughness. Radiophys Quantum El 65, 209–218 (2022). https://doi.org/10.1007/s11141-023-10206-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10206-6

Navigation