Skip to main content
Log in

Use of Carbon-Based Composite Materials with Anisotropic Conductivity for Creating Microwave Antennas

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We develop and test engineering solutions aimed at creating antenna devices made of carbonbased composite materials and operated in various intervals of the microwave range. The main electromagnetic characteristics of the antennas in this range are computer simulated and studied experimentally. The influence of the anisotropy of the material conductivity on the parameters of horn antennas is studied. Feasibility of using materials with anisotropic conductivity for creating antenna devices with given radio-frequency characteristics is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. B.Vendik and O. G.Vendik, Tech. Phys., 58, No. 1, 1–24 (2013). https://doi.org/10.1134/S1063784213010234

    Article  Google Scholar 

  2. I. V. Bychkov, I. S. Zotov, and A.A. Fedii, Tech. Phys. Lett., 37, No. 7, 689–692 (2011). https://doi.org/10.1134/S1063785011070182

    Article  Google Scholar 

  3. N.E.Kazantseva, N.G.Ryvkina, and I. A.Chmutin, J. Commun. Technol. Electron., 48, No. 2, 173 (2003).

    Google Scholar 

  4. M. Shelley and N. Dang, in: IEE Colloquium on Low Cost Antenna Technology, February 24, 1998, London, UK, pp. 7/1–7/5. https://doi.org/10.1049/ic:19980083

  5. E. Geterud, P. Bergmark, and J.Yang, in: 7th European Conf. Antennas and Propagation, April 8–12, 2013, Gothenburg, Sweden, pp. 1812–1815.

  6. N.A.Testoedov, V.V. Dvirny, V.E.Kosenko, et al., “Convertible umbrella-type space-borne antenna” [in Russian], RF Patent No. 2427949 (2011).

  7. Y. Chung-Yen, “Method of forming antenna by utilizing graphene,” US Patent 2013/0004658A1 (2013).

  8. G. Artner, R. Langwieser, and C. F.Mecklenbräuker, in: 11th European Conf. on Antennas and Propagation, March 19–24, 2017, Paris, France, pp. 3601–3605. 10.23919/EuCAP.2017.7928128

  9. J. M. Thomassin, C. Jeromea, T.Pardoenb, et al., Mater. Sci. Eng., 74, No. 7, 211–232 (2013). https://doi.org/10.1016/j.mser.2013.06.001

  10. L. Ciccarelli, C. Breckenfelder, and C.Greb, Wireless Power Transfer, 6, No. 1, 1–16 (2019). https://doi.org/10.1017/wpt.2018.5

    Article  Google Scholar 

  11. A.Mehdipour, A.R. Sebak, C.W.Trueman, et al., National Radio Sci. Conf., April 10–12, 2012, Cairo, Egypt, p. 6208499. https://doi.org/10.1109/NRSC.2012.6208499

  12. G. Artner, R. Langwieser, R. Zemann, and C. F.Mecklenbräuker, in: 2016 IEEE-APS Topical Conf. on Antennas and Propagation in Wireless Communications, September 19–23, 2016, Cairns, Australia, pp. 59–62. https://doi.org/10.1109/APWC.2016.7738118

  13. N. A.Toujo, “Metamaterial and method for manufacturing same”, US Patent No. 2011/0139488A1 (2011).

  14. N. A. Dugin, T. M. Zaboronkova, E. N.Myasnikov, and V.V.Chugurin, “Antenna and feeder device made of a carbon-based composite material and the method of manufacturing it” [in Russian], RF Patent No. 2577918 (2016).

  15. T. Zaboronkova, N. Dugin, and E.Myasnikov, in: 9th European Conf. on Antennas and Propagation, Lisbon, Portugal, April 13–17, 2015, p. 7228220.

  16. N. A. Dugin, T. M. Zaboronkova, and E.N.Myasnikov, Tech. Phys. Lett., 42, No. 6, 598–600 (2016). https://doi.org/10.1134/S1063785016060043

    Article  ADS  Google Scholar 

  17. N. A. Dugin, T. M. Zaboronkova, C. Krafft, and G.R.Belyaev, Electronics, 9, 590 (2020). https://doi.org/10.3390/electronics9040590

    Article  Google Scholar 

  18. https://zoltek.com/products/px35/

  19. https://www.toraycma.com/wp-content/uploads/T700S-Technical-Data-Sheet-1.pdf.pdf

  20. V. Slyusar, Elektronika: Nauka, Tekhnol., Biznes, No. 7, 70–79 (2009).

  21. E. Lier, IEEE Antennas Propag. Mag., 52, No. 2, 31–39 (2010). https://doi.org/10.1109/MAP.2010.5525564

    Article  ADS  Google Scholar 

  22. M. Lashab, C. Zebiri, F. Benabdelaziz, et al., in: 2014 Int. Conf. on Multimedia Computing and Systems, April 14–16, 2014, Marrakech, Morocco, pp. 1372–1375. https://doi.org/10.1109/ICMCS.2014.6911410

  23. R. B.Hwang, H. W. Liu, and C.Y.Chin, Prog. Electromagn. Res., 93, 275–289 (2009). https://doi.org/10.2528/PIER09050606

    Article  Google Scholar 

  24. V. V. Rybin, P. A.Kuznetsov, I. V. Ulin, et al., Vopr. Metalloved., 1, No. 45, 169–178 (2006).

    Google Scholar 

  25. H. Shi, J.Chen, A. Zhang, and Y. Jiang, Frequenz, 67, Nos. 9–10, 271–276 (2013). https://doi.org/10.1515/freq-2012-0136

    Article  ADS  Google Scholar 

  26. A. T. Nettles and E. J.Biss, “Low temperature mechanical testing of carbon-fiber/epoxy-resin composite materials”, NASA Technical Paper 3663, Marshall Space Flight Center, Huntsville (1996).

    Google Scholar 

  27. A. A.Kurushin, HFSS-Based Modeling of Antennas and Microwave Structures [in Russian], Solon-Press, Moscow (2018).

    Google Scholar 

  28. N. M.Tseitlin, ed., Methods of Measuring Microwave Antenna Characteristics [in Russian], Radio i Svyaz’ (1985).

  29. IEEE Std 149-1979. IEEE Standard Test Procedure Antennas, IEEE, Piscataway (1979).

  30. N. A. Dugin, T. M. Zaboronkova, E. N.Myasnikov, and G.R.Belyaev, Tech. Phys., 63, 268–273 (2018). https://doi.org/10.1134/S1063784218020111

    Article  Google Scholar 

  31. N. A. Dugin, T. M. Zaboronkova, G.R. Belyaev, and E.N.Myasnikov, Tech. Phys., 66, No. 4, 571–579 (2021). https://doi.org/10.1134/S106378422104006X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Dugin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 12, pp. 983–993, December 2021. Russian DOI: https://doi.org/10.52452/00213462_2021_64_12_983

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dugin, N.A., Zaboronkova, T.M., Belyaev, G. et al. Use of Carbon-Based Composite Materials with Anisotropic Conductivity for Creating Microwave Antennas. Radiophys Quantum El 64, 884–892 (2022). https://doi.org/10.1007/s11141-022-10186-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-022-10186-z

Navigation