Skip to main content

Advertisement

Log in

Development and Experimental Study of a Pulsed Megawatt Gyroklystron Operating in the Long-Wavelength Part of the Millimeter-Wavelength Range at IAP RAS

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We have developed and studied experimentally a two-cavity gyroklystron operating at a frequency of 35 GHz and the cavity mode TE0 2 1 in a cryomagnet. The output radiation power achieved in the pulsed regime is 750 kW with an efficiency of 24%, a gain of 20 dB, and amplified-frequency bandwidth equal to 220 MHz (0.63%) at an accelerating beam voltage of 74 kV, a current of 42.5 A, and a pulse duration of 100 μs. An operating-frequency bandwidth equal to 310 MHz (0.89%) at a power level of 430 kW has been achieved in another variant of the gyroklystron. At fixed current and beam voltage, the limitation of the efficiency and the bandwidth of the operating frequencies is determined by self-excitation of parasitic oscillations in the output cavity at the TE2 2 1 mode. The limitation of the highest power of the output radiation at a level of 750 kW is related to the formation of a high-frequency discharge in the output cavity because of the deterioration of the vacuum in it as a result of heating the internal surface of the cavity due to ohmic losses. Strong influence of the axial distribution of the static magnetic field in the interaction space on the efficiency and the output radiation power is predicted theoretically and demonstrated experimentally. By finding an optimal longitudinal structure of the magnetic field using solenoids and magnetic shields, we have managed to increase the efficiency and the power of the gyroklystron in the experiment by 1.3 times compared to the case of a homogeneous distribution of the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. A. Tolkachev, B. A. Levitan, G. K. Solovjev, et al., IEEE Aerosp. Electron. Syst. Mag., 15, No. 7, 25–31 (2000). https://doi.org/10.1109/62.854021

    Article  Google Scholar 

  2. A. A. Tolkachev, B. A. Levitan, V.E.Myasnikov, et al., Radiolok. Svyaz’, No. 4, 3–7 (2007).

  3. M. G. Czerwinski and J.M.Usoff, Lincoln Lab. J., 21, No. 1, 28–44 (2014).

    Google Scholar 

  4. N. I. Zaitsev, A. K. Gvozdev, S. A. Zapevalov, et al., J. Commun. Technol. Electron., 59, No. 2, 164–168 (2014). https://doi.org/10.1134/S1064226913120188

    Article  Google Scholar 

  5. E. B. Abubakirov, Y. M. Guznov, S.V.Kuzikov, et al., IEEE Trans. Microw. Theory Techn., 66, No. 3, 1273–1278 (2018). https://doi.org/10.1109/TMTT.2017.2772917

    Article  ADS  Google Scholar 

  6. E. A. Nanni, R.H.Wenqian, K. -H. Hong, et al., Nat. Commun., 6, 8486 (2015). https://doi.org/10.1038/ncomms9486

    Article  ADS  Google Scholar 

  7. I. I. Antakov, E. V. Zasypkin, E.V. Sokolov, et al., in: Conf. Digest 18th Int. Conf. Infrared Millimeter Waves, September 6–10, 1993, Colchester, UK, p. 338–339.

  8. I. I. Antakov, I. G. Gachev, and E. V. Zasypkin, Radiophys. Quantum Electron., 54, No. 3, 166–173 (2011). https://doi.org/10.1007/s11141-011-9279-3

    Article  ADS  Google Scholar 

  9. E.V.Zasypkin, I.G.Gachev, and I. I. Antakov, Radiophys. Quantum Electron., 55, No. 5, 309–317 (2012). https://doi.org/10.1007/s11141-012-9370-4

    Article  ADS  Google Scholar 

  10. I. I. Antakov, I. G. Gachev, and E. V. Zasypkin, IEEE Trans. Plasma Sci., 22, No. 5, 878–882 (1994). https://doi.org/10.1109/27.338303

    Article  ADS  Google Scholar 

  11. V. N. Manuilov and S. A. Polushkina, Radiophys. Quantum Electron., 52, No. 10, 714–721 (2009.) https://doi.org/10.1007/s11141-010-9179-y

    Article  ADS  Google Scholar 

  12. O. I. Louksha, D. B. Samsonov, G.G. Sominskii, and S.V. Semin, Tech. Phys., 58, No. 5, 751–759 (2013). https://doi.org/10.1134/S1063784213050137

    Article  Google Scholar 

  13. E. V. Zasypkin and I.G.Gachev, Radiophys. Quantum Electron., 63, No. 7, 511–521 (2020). https://doi.org/10.1007/s11141-021-10075-x

    Article  ADS  Google Scholar 

  14. E. V. Zasypkin and M.A.Moiseev, Radiophys. Quantum Electron., 37, No. 10, 853–862 (1994). https://doi.org/10.1007/BF01038059

    Article  ADS  Google Scholar 

  15. E. V. Zasypkin, Radiophys. Quantum Electron., 63, Nos. 5–6, 403–412 (2020). https://doi.org/10.1007/s11141-021-10065-z

    Article  ADS  Google Scholar 

  16. Sh. E. Tsimring and V. G. Pavel’ev, Radiotekh. Élektron., 27, No. 6, 1099–1102 (1982).

    Google Scholar 

  17. E.V.Zasypkin, I. I. Antakov, I.G.Gachev, et al., in: Conf. Digest 23rd Int. Conf. Infrared Millimeter Waves, September 7–11, 1998, Colchester, UK, pp. 323–324.

  18. I. I. Antakov, V. S. Ergakov, E.V. Zasypkin, and E.V. Sokolov, Radiophys. Quantum Electron., 20, No. 4, 413–418 (1977). https://doi.org/10.1007/BF01033931

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Zasypkin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 7, pp. 535–547, July 2021. Russian DOI: https://doi.org/10.52452/00213462_2021_64_07_535

I. I. Antakov is deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zasypkin, E.V., Gachev, I.G., Sokolov, E. et al. Development and Experimental Study of a Pulsed Megawatt Gyroklystron Operating in the Long-Wavelength Part of the Millimeter-Wavelength Range at IAP RAS. Radiophys Quantum El 64, 482–493 (2021). https://doi.org/10.1007/s11141-022-10149-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-022-10149-4

Navigation