Skip to main content
Log in

A Set of Receiving Equipment for Detection of Collective Thomson Scattering Spectra at the Gas-Dynamic Trap (GDT) Facility

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We describe the set of receiving equipment, which was designed for the experiments on detection of the Thomson collective scattering spectra of high-power millimeter-wave radiation in a large-scale open magnetic trap “Gas Dynamic Trap (GDT)” performed at the G. I. Budker Institute for Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk, Russia). The set consists of two identical radiometers/spectrum analyzers with an analysis band of 54.47 ± 0.55 GHz and a sensitivity of no less than 0.080–0.025 eV, which ensure simultaneous measurements in two independent channels corresponding to different reception angles of the scattered radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Sheffield, Plasma Scattering of Electromagnetic Radiation, Academic Press (1975).

    Google Scholar 

  2. H. Bindslev, Rev. Sci. Instrum., 70, 1093–1090 (1999). https://doi.org/10.1063/1.1149521

    Article  ADS  Google Scholar 

  3. D. Moseev, M. Salewski, M. Garcia-Muñoz, et al., Rev. Mod. Plasma Phys., 2, 7 (2018). https://doi.org/10.1007/s41614-018-0019-4

    Article  ADS  Google Scholar 

  4. H. Bindslev, F. Meo, E. L. Tsakadze, et al., Rev. Sci. Instrum. A, 75, 10, 3598–3600 (2004). https://doi.org/10.1063/1.1779620

    Article  ADS  Google Scholar 

  5. E. V. Suvorov, E. Holzhauer, W. Kasparek, et al., Plasma Phys. Control. Fusion, 39, No. 12B, B337–B351 (1997). https://doi.org/10.1088/0741-3335/39/12B/026

    Article  Google Scholar 

  6. E. V. Suvorov, E. Holzhauer, W. Kasparek, et al., Nucl. Fusion, 38, No. 5, 661–671 (1998). https://doi.org/10.1088/0029-5515/38/5/302

    Article  ADS  Google Scholar 

  7. A. G. Shalashov, E.V. Suvorov, L.V. Lubyako, et al., Plasma Phys. Control. Fusion, 45, 395–412 (2003). https://doi.org/10.1088/0741-3335/45/4/306

    Article  ADS  Google Scholar 

  8. P.A. Bagryansky, A.G. Shalashov, E.D.Gospodchikov, et al., Phys. Rev. Lett., 114, No. 20, 205001 (2015). https://doi.org/10.1103/PhysRevLett.114.205001

    Article  ADS  Google Scholar 

  9. P.A.Bagryansky, A.V.Anikeev, G.G.Denisov, et al., Nucl. Fusion, 55, No. 5, 053009 (2015). https://doi.org/10.1088/0029-5515/55/5/053009

    Article  ADS  Google Scholar 

  10. T. C. Simonen, J. Fusion Energy, 35, No. 1, 63–68 (2016). https://doi.org/10.1007/s10894-015-0017-2

    Article  Google Scholar 

  11. D.V.Yakovlev, A.G. Shalashov, E.D.Gospodchikov, et al., Nucl. Fusion, 58, No. 9, 094001 (2018). https://doi.org/10.1088/1741-4326/aacb88

    Article  ADS  Google Scholar 

  12. H. Gota, M.W.Binderbauer, T. Tajima, et al., Nucl. Fusion. 57, No. 11, 116021 (2017). https://doi.org/10.1088/1741-4326/aa7d7b

    Article  ADS  Google Scholar 

  13. P.A. Bagryansky, A.D.Beklemishev, and V.V.Postupaev, J. Fusion Energy, 38, 162–181 (2019). https://doi.org/10.1007/s10894-018-0174-1

    Article  Google Scholar 

  14. A. G. Shalashov, E.D.Gospodchikov, T.A.Khusainov, et al., Plasma Phys. Control. Fusion, 62, 065010 (2020). https://doi.org/10.1088/1361-6587/ab83cc

    Article  ADS  Google Scholar 

  15. U. Tartari, G. Grosso, G. Granucci, et al., Nucl. Fusion, 46, No. 11, 928–940 (2006). https://doi.org/10.1088/0029-5515/46/11/007

    Article  ADS  Google Scholar 

  16. A. G. Shalashov, A. L. Solomakhin, E. D. Gospodchikov, et al., Phys. Plasmas, 24, 082506 (2017). https://doi.org/10.1063/1.4994793

    Article  ADS  Google Scholar 

  17. L. V. Lubyako, E. V. Suvorov, A.B.Burov, et al., Tech. Phys., 43, 926–933 (1998). https://doi.org/10.1134/1.1259102

    Article  Google Scholar 

  18. V. G. Bozhkov, V.A. Genneberg, K. I. Kurkan, et al., Élektron. Promyshlennost’, 9, 88–93 (1993).

    Google Scholar 

  19. A.E.Basharinov, L.G.Tuchkov, V.M. Polyakov, and N. I. Ananov, Measurement of Radio-Thermal and Plasma Radiation in the Microwave Range [in Russian], Sov. Radio (1968).

  20. T. Geist and M. Bergbauer, Int. J. Infrared Millim. Waves, 15, No. 12, 2043–2049 (1994). https://doi.org/10.1007/BF02096276

    Article  ADS  Google Scholar 

  21. Yu. Dryagin, N. Skalyga, and T. Geist, Int. J. Infrared MM Waves, 1996. V. 17, 1199–1204 (1996). https://doi.org/10.1007/BF02088905

  22. L. A. Vainshtein, Electromagnetic Waves [in Russian], Radio i Svyaz’, Moscow (1988).

  23. J. L. Altman, Microwave Circuits, Van Nostrand, New York (1964).

    Google Scholar 

  24. A. Yariv, Electron. Lett., 36, No. 4, 321–322 (2000). https://doi.org/10.1049/el:20000340

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.V. Lubyako.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 5, pp. 373–383, May 2021. Russian DOI: 10.52452/00213462_2021_64_05_373

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lubyako, L., Shalashov, A.G., Andriyanov, A.F. et al. A Set of Receiving Equipment for Detection of Collective Thomson Scattering Spectra at the Gas-Dynamic Trap (GDT) Facility. Radiophys Quantum El 64, 338–346 (2021). https://doi.org/10.1007/s11141-022-10136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-022-10136-9

Navigation