Skip to main content
Log in

On Designing the Electron-Optical System of a Multibarrel Gyrotron

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We propose an original way to produce several thin helical electron beams using one common magnetic system. The proposed systems with broken azimuthal symmetry of the emission surface of the adiabatic magnetron-injection gun (MIG) can be used in multibarrel gyrotrons. Specific features of the new system are analyzed on an example of MIGs optimized for gyrotron operation at a frequency of 140 GHz and compared with MIGs for other frequency ranges. The influence of the azimuthal drift on the operation of the gyrotron is analyzed both in the regime of singlefrequency stable generation and in the case of switching on/off the gyrotron setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. L. Goldenberg, G.G. Denisov, V. E. Zapevalov, A.G. Litvak, and V. A. Flyagin, Radiophys. Quantum Electron., 39, No. 6, 423–446 (1996). https://doi.org/https://doi.org/10.1007/BF02122390

  2. M.Yu.Glyavin, G.G. Denisov, V. E. Zapevalov, M. A. Koshelev, M.Yu. Tretyakov, and A. I. Tsvetkov, Phys. Usp., 59, No. 6, 595–604 (2016). https://doi.org/https://doi.org/10.3367/UFNe.2016.02.037801

  3. T. Idehara and S.P. Sabchevski, J. Infrared, Millimeter, Terahertz Waves, 38, 62–86 (2017). https://doi.org/https://doi.org/10.1007/s10762-016-0314-5

  4. V. E. Zapevalov, Radiophys. Quantum Electron., 61, No. 4, 272-280 (2018). https://doi.org/https://doi.org/10.1007/s11141-018-9888-1

  5. V. E. Zapevalov, A. S. Zuev, and A. N. Kuftin, in: Abstr. XI All-Russia Workshop on Radiophysics of Millimeter and Submillimeter Waves, February 25–28, 2019, Nizhny Novgorod, Russia, p. 19.

  6. V. E. Zapevalov, A. S. Zuev, and A. N. Kuftin, Radiophys. Quantum Electron., 63, No. 2, 97-105 (2020). https://doi.org/https://doi.org/10.1007/s11141-020-10038-8

  7. E. Jerby, A. Kesar, M. Korol, et al., IEEE Trans. Plasma Sci., 27, No. 2, 445–455 (1999). https://doi.org/https://doi.org/10.1109/27.772272

  8. L. M. Borisov, `E. A. Gel’vich, E. V. Zhary, et al., Elektron. Tekhn. Ser. 1. SVCh-Tekhn., No. 1(455), 12–20 (1993).

  9. V. E. Zapevalov, A. N. Kuftin, and V.K. Lygin, Radiophys. Quantum Electron., 50, No. 9, 702-712 (2007). https://doi.org/https://doi.org/10.1007/s11141-007-0061-5

  10. V. L. Bratman, Yu.K.Kalynov, V.N.Manuilov, and S.V. Samsonov, Tech. Phys., 50, 1611-1616 (2005). https://doi.org/https://doi.org/10.1134/1.2148563

  11. T. Idehara, I. Ogawa, S. Mitsudo, et al., IEEE Trans. Plasma Sci., 32, No. 3, 903–909 (2004). https://doi.org/https://doi.org/10.1109/TPS.2004.827614

  12. V. L. Bratman, Yu.K.Kalynov, and V. N. Manuilov, J. Commun. Tech. Electron., 56, No. 4, 500 (2011). https://doi.org/https://doi.org/10.1134/S1064226911040024

  13. S.V. Samsonov, K.A. Leshcheva, and V.N.Manuilov, IEEE Trans. Electron Devices, 67, 8, 3385–3390 (2020). https://doi.org/https://doi.org/10.1109/TED.2020.3001491

  14. Sh. E. Tsimring, Introduction to High-Frequency Vacuum Electronics and Physics of Electron Beams [in Russian], Inst. Appl. Phys., Nizhny Novgorod, Russia (2012).

    Google Scholar 

  15. V. K. Lygin and Sh. E. Tsimring, Elektron. Tekhn. Ser. 1. Elektron. SVCh, No. 6, 59–71 (1971).

  16. V. N. Manuilov, V.Yu. Zaslavsky, N. S.Ginzburg, et al., Phys. Plasmas, 21, 023106 (2014). https://doi.org/https://doi.org/10.1063/1.4864630

  17. E. S. Semenov, O. P. Plankin, and R.M.Rozental, Izv. Vyssh. Uchebn. Zaved. Prikl. Nonlin. Dynamika, 23, 3, 94–105 (2015). https://doi.org/10.18500/0869-6632-2015-23-3-94-105

    Google Scholar 

  18. Yu.Bykov, G. Denisov, A.Eremeev, et al., Rev. Sci. Instr., 75, No. 5, 1437–1438 (2004). https://doi.org/https://doi.org/10.1063/1.1690480

  19. E.B.Abubakirov, A.V. Chirkov, G.G.Denisov, et al., IEEE Trans. Electron Devices, 64, No. 4, 1865–1867 (2017). https://doi.org/https://doi.org/10.1109/TED.2017.2664106

  20. N. A. Zavolsky, V. E. Zapevalov, O.V.Malygin, M.A.Moiseev, and A. S. Sedov, Radiophys. Quantum Electron., 52, Nos. 5–6, 379 (2009). https://doi.org/https://doi.org/10.1007/s11141-009-9148-5

  21. N. A. Zavol’sky, V. E. Zapevalov, A. S. Zuev, O.P.Plankin, A. S. Sedov, and E. S. Semenov, Radiophys. Quantum Electron., 61, No. 6, 436–444 (2018). https://doi.org/https://doi.org/10.1007/s11141-018-9905-4

  22. A. N.Kuftin, V.K. Lygin, Sh. E.Tsimring, and V. E. Zapevalov, Int. J. Electron, 2, Nos. 5–6, 1145–1151 (1992). https://doi.org/https://doi.org/10.1080/00207219208925640

  23. N. A. Zavol?skiy, V.E. Zapevalov, M.A.Moiseev, and A. S. Sedov, Radiophys. Quantum Electron., 54, No. 6, 402–408 (2011) https://doi.org/10.1007/s11141-011-9300-x

  24. I. B. Bott, Physics Lett., 14, No. 4, 293–294 (1965). https://doi.org/https://doi.org/10.1016/0031-9163(65)90206-4

  25. Patent 1096921 UK, IPC H01J 25/00. Radiation Generators: No. 12348/63. Appl. 28.03.1963, publ.29.12.1967. Bott I. B., 6 ps.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Zuev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, Nos. 8, pp. 704–713, January 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zapevalov, V.E., Zuev, A.S., Kuftin, A.N. et al. On Designing the Electron-Optical System of a Multibarrel Gyrotron. Radiophys Quantum El 63, 634–642 (2021). https://doi.org/10.1007/s11141-021-10086-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10086-8

Navigation