Skip to main content

Advertisement

Log in

High-Efficiency Relativistic Generators of Nanosecond Pulses in the Millimeter-Wavelength Range

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We propose and study a scheme of a microwave pulse generator operating in the frequency ranges near 37 and 73 GHz, in which the electron interaction with both the (−1)st harmonic of the counterpropagating TM02 mode and the synchronous slowed-down TM01 mode is combined in a sectionalized slow-wave system with an average diameter of 2.5λ. An efficient current modulation at the input of the slow-wave system is ensured in the region of the cathode–anode gap and the matching section, which reduces the diffraction loss of the energy flow directed towards the cathode. Numerical modeling shows that the efficiency of converting the electron-beam power to microwave radiation is up to 50%. Experiments demonstrate a stable regime of generation of subgigawatt pulses at an efficiency of more than 40% in the upper part of the millimeterwavelength range, which have a reproducible spatial wave structure corresponding predominantly to the TM01 mode at the input of the emitting horn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. H. Gold and G. S.Nusinovich, Rev. Sci. Instrum., 68, No. 11, 3945 (1997).

    Article  ADS  Google Scholar 

  2. H. K.Malik, S.Kumar, and K. P. Singh, Laser Part. Beams, 26, No. 2, 197 (2008).

    Article  ADS  Google Scholar 

  3. V. L. Bratman, V. G. Zorin, Y.K.Kalyanov, et al., Phys. Plasmas, 18, No. 8, 083507 (2011).

    Article  ADS  Google Scholar 

  4. Y. E.Krasik, J.G. Leopold, G. Shafir, et al., Plasma, 2, No. 1, 51 (2019).

    Article  Google Scholar 

  5. V. V. Rostov, E.M.Totmeninov, R. V. Tsygankov, et al., IEEE Trans. Elect. Devices, 65, No. 7, 3019 (2018).

    Article  ADS  Google Scholar 

  6. V. V.Rostov, I.V.Romanchenko, R.V.Tsygankov, et al., Phys. Plasmas, 25, No. 7, 073110 (2018).

    Article  ADS  Google Scholar 

  7. S.P. Bugaev, V. A.Cherepenin, V. I.Kanavets, et al., IEEE Trans. Plasma Sci., 18, 518 (1990).

    Article  ADS  Google Scholar 

  8. G. A. Mesyats, S. D.Korovin, V. V. Rostov, et al., Pros. IEEE, 92, 1166 (2004).

    Article  Google Scholar 

  9. V. V.Rostov, E.M.Totmeninov, and M. I.Yalandin, Tech. Phys., 53, No. 11, 1471 (2008).

    Article  Google Scholar 

  10. A.Yariv and M. Nakamura, IEEE J. Quantum Electron., QE-13, No. 4, 233 (1977).

    Article  ADS  Google Scholar 

  11. V. L. Bratman, G. G. Denisov, B.D.Kol’chugin, et al., Int. J. Infrared Millim. Waves, 5, No. 9, 1311 (1984).

    Article  ADS  Google Scholar 

  12. G. G. Denisov, D.A. Lukovnikov, and S.V. Samsonov, Int. J. Infrared Millim. Waves, 16, No. 4, 745 (1995).

    Article  ADS  Google Scholar 

  13. V. V. Rostov and E.M.Tot’meninov, Radiophys. Quantum Electron., 36, No. 2, 126 (1993).

    Article  ADS  Google Scholar 

  14. V.P.Tarakanov, in: Mathematical Modeling: Problems and Results [in Russian], Nauka, Moscow (2003), p. 456.

    Google Scholar 

  15. V. V. Rostov, A.V.Gunin, R. V.Tsygankov, et al., IEEE Trans. Plasma Sci., 46, No. 1, 33 (2018).

    Article  ADS  Google Scholar 

  16. V. V. Rostov, E.M.Totmeninov, R. V. Tsygankov, et al., IEEE Trans. Electron Dev., 65, No. 7, 3019 (2018).

    Article  ADS  Google Scholar 

  17. V.O. Melikhov, M. V. Nazarova, and V. A. Solntsev, J. Commun. Technol. Electron., 54, No. 12, 1403 (2009).

    Article  Google Scholar 

  18. P. V. Vykhodtsev, A.A.Elchaninov, A. I.Klimov, et al., Instrum Exp. Tech., 58, No. 4, 510 (2015).

    Article  Google Scholar 

  19. V.V. Rostov, A.A. Elchaninov, I.V. Romanchenko, et al., Radiophys. Quantum Electron., 56, Nos. 8–9, 475 (2013).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Tsygankov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 62, No. 7–8, pp. 522–527, July–August 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostov, V.V., Tsygankov, R.V., Stepchenko, A.S. et al. High-Efficiency Relativistic Generators of Nanosecond Pulses in the Millimeter-Wavelength Range. Radiophys Quantum El 62, 467–471 (2019). https://doi.org/10.1007/s11141-020-09992-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-020-09992-0

Navigation