Skip to main content

Advertisement

Log in

The Parameterization Method of Discrete VLF Chorus Emissions

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present a method for automatic search and parameterization of discrete elements of very low-frequency (VLF) chorus emissions. The method is based on the processing of dynamic spectrograms using a special scanning algorithm, which is intended for seeking the discrete elements of VLF chorus emissions and calculation of their parameters. We propose to create the optimal dynamic spectrograms for the scanning algorithm by using short-time Fourier transform. The paper gives general recommendations for calculation of spectrograms and their preprocessing. The scanning algorithm is based on processing of the dynamic-spectrogram images by using the methods of mathematical morphology. The developed method was tested for several cases of chorus emissions observed by the Van Allen Probes spacecraft. It is shown that the total errors related to “false positive” detection and missing the target are about 10% of the elements visible to the human eye when the optimal parameters of the scanning algorithm are used and intense discrete elements are processed. The method can be applied to both spacecraft and ground-based wave data. The results of using the method can be employed for verification of physical theories of the formation of chorus emissions and determining their statistical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. J. Burtis and R.A.Helliwell, Planet. Space Sci., 24, No. 11, 1007 (1976).

    Article  ADS  Google Scholar 

  2. S. S. Sazhin and M. Hayakawa, Planet. Space Sci., 40, No. 5, 681 (1992).

    Article  ADS  Google Scholar 

  3. V. Y. Trakhtengerts, A. G. Demekhov, E. E. Titova, et al., Phys. Plasmas, 11, No. 4, 1345 (2004).

    Article  ADS  Google Scholar 

  4. V. Y. Trakhtengerts, J. Geophys. Res.: Space Phys., 100, No. A9, 17205 (1995).

    Article  ADS  Google Scholar 

  5. V. Y. Trakhtengerts, Ann. Geophys., 17, No. 1, 95 (1999).

  6. A. G. Demekhov, Radiophys. Quantum Electron., 59, No. 10, 773 (2016).

  7. E. Macúšová, O. Santolík, P. Décréau, et al., J. Geophys. Res.: Space Phys., 115, No. A12, A12257 (2010).

    Article  Google Scholar 

  8. E.E.Titova, A.G. Demekhov, B. V. Kozelov, et al., J. Geophys. Res.: Space Phys., 117, No. A8, A08210 (2012).

    Article  Google Scholar 

  9. E.E.Titova, B. V. Kozelov, F. Jiriček, et al., Ann. Geophys., 21, No. 5, 1073 (2009).

    Article  ADS  Google Scholar 

  10. F. Lefeuvre and M. Parrot, J. Atmosph. Terr. Phys., 41, No. 2, 143 (1979).

    Article  ADS  Google Scholar 

  11. D. I. Golden, M. Spasojevic, and U. S. Inan, J. Geophys. Res.: Space Phys., 116, No. A3, A03225 (2011).

  12. J. Serra, Image Analysis and Mathematical Morphology, Vol. 1, Academic Press, London (1982).

  13. B. Perret, S. Lefèvre, and C. Collet, Pattern Recognition, 42, No. 11, 2470 (2009).

    Article  Google Scholar 

  14. B.V. Kozelov, Ju. Manninen, and E.E.Titova, Cosmic Res., 54, No. 1, 40 (2016).

    Article  ADS  Google Scholar 

  15. O. Santolík, E. Macúšová, E. E. Titova, et al., Ann. Geophys., 26, No. 7, 1665 (2008).

    Article  ADS  Google Scholar 

  16. Y. Omura, Y. Katoh, and D. Summers, J. Geophys. Res.: Space Phys., 113, No. A4, A04223 (2008).

    Article  Google Scholar 

  17. L. M. Gol’denberg, B.D.Matyushkin, and M.N. Polyak, Digital Signal Processing [in Russian], Radio i Svyaz’, Moscow (1985).

  18. J. Bortnik, J. W. Cutler, C. Dunson, and T.E. Bleier, J. Geophys. Res.: Space Phys., 112, No. A4, A04204 (2007).

    Article  Google Scholar 

  19. J. D. Means, J. Geophys. Res., 77, No. 28, 5551 (1972).

    Article  ADS  Google Scholar 

  20. R.C. Gonsalez and R. E. Woods, Digital Image Processing, Prentice-Hall, Inc., Upper Saddle River, NJ, USA (2006).

  21. M. Khosravi and R.W. Schafer, IEEE Trans. Image Proc., 5, No. 6, 1060 (2007).

    Article  ADS  Google Scholar 

  22. A. G. Demekhov and V.Yu.Trakhtengerts, Radiophys. Quantum Electron., 48, No. 9, 639 (2005).

    Article  ADS  Google Scholar 

  23. A. G. Demekhov and V.Yu.Trakhtengerts, Radiophys. Quantum Electron., 51, No. 11, 830 (2008).

    Article  ADS  Google Scholar 

  24. D. Nunn, O. Santolík, M. Rycroft, and V. Trakhtengerts, Ann. Geophys., 27, No. 6, 2341 (2009).

    Article  ADS  Google Scholar 

  25. C.A. Kletzing, W. S. Kurth, M. Acuna, et al., Space Sci. Rev., 179, No. 1, 127 (2013).

    Article  ADS  Google Scholar 

  26. R. Adams and L. Bischof, IEEE Trans. Pattern Analysis Machine Intelligence, 16, No. 6, 641 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Larchenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 62, No. 3, pp. 177–193, March 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larchenko, A.V., Demekhov, A.G. & Kozelov, B.V. The Parameterization Method of Discrete VLF Chorus Emissions. Radiophys Quantum El 62, 159–173 (2019). https://doi.org/10.1007/s11141-019-09964-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-019-09964-z

Navigation