Skip to main content

Advertisement

Log in

Analysis of the Methods of Discrete and Smooth Frequency Tuning in Gyrotrons for Spectroscopy, on the Example of a Generator Operated in the 0.20–0.27 THz Frequency Range

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We consider the main features of a low-power frequency-tunable gyrotron with an oversized cavity, which is designed for the purposes of nuclear magnetic resonance spectroscopy and other applications and operates in the 0.20–0.27 frequency range producing an output power of 200 W. We study the possibilities of wideband output frequency tuning by exciting a sequence of modes with similar caustics using magnetic-field variations and smooth tuning due to the excitation of modes with a great number of longitudinal variations. Aiming at widening the frequency tuning range, we also analyzed the possibility of smooth frequency tuning determined by controlled variations of the cavity temperature. Specific features of the electron-optical system of such a gyrotron is discussed, along with the possibility of increasing its efficiency by means of single-stage recovery of the residual energy of the electron beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.Yu.Glyavin, G.G. Denisov, V.E. Zapevalov, et al., Phys. Usp., 59, No. 6, 595 (2016).

    Article  ADS  Google Scholar 

  2. N.Kumar, U. Singh, T.P. Singh, and A.K. Sinha, J. Fusion Energy, 30, No. 4, 257 (2011).

  3. J. H. Booske, R. J.Dobbs, C.D. Joye, et al., IEEE Trans. Electron Devices, 1, No. 1, 54 (2011).

  4. L. R. Becerra, G. J.Gerfen, R. J.Temkin, et al., Phys. Rev. Lett., 71, No. 21, 3561 (1993).

    Article  ADS  Google Scholar 

  5. V. S.Bajaj, C. T.Farrar, M. K.Hornstein, et al., J. Magnetic Res., 160, 85 (2003).

  6. G.S.Nusinovich, M.K.A.Thumm, and M. I. Petelin, J. Infrared, Millimeter, Terahertz Waves, 35, No. 4, 325 (2017).

  7. T. Idehara and S.P. Sabchevski, J. Infrared, Millimeter, Terahertz Waves, 33, No. 7, 667 (2012).

  8. M.Thumm, A. Arnold, E.Borie, et al., Fusion Eng. Design, 53, 407 (2001).

  9. V. E. Zapevalov, A. A. Bogdashov, G. G. Denisov, et al., Radiophys. Quantum Electron., 47, Nos. 5–6, 395 (2004).

  10. M.Yu.Glyavin, A.V.Chirkov, G.G. Denisov, et al., Rev. Sci. Instr., 86, No. 5, 054705 (2015).

  11. G. S. Nusinovich and R. ´E. ´Erm, Elektron. Tekhn., Ser. I, Electron. SVCh, 8, 55 (1972).

  12. N. A. Zavolsky, V.E. Zapevalov, and M. A. Moiseev, Radiophys. Quantum Electron., 44, No. 4, 318 (2001).

  13. Sh. E. Tsimring, Electron Beams and Microwave Vacuum Electronics, Wiley-Interscience (2006).

  14. O.P. Plankin and E. S. Semenov, Nizhny Novgorod Univ. Bull. Ser. Fizika, 8, 2, 44 (2013).

    Google Scholar 

  15. V. E. Zapevalov and O. V. Malygin, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 26, No. 7, 903 (1983).

  16. G. S.Nusinovich, R.Pu, O.V. Sinitsyn, et al., IEEE Trans. Plasma Sci., 38, No. 6, 1200 (2010).

    Article  ADS  Google Scholar 

  17. A.C.Torrezan, M. A. Shapiro, J.R. Sirigiri, et al., IEEE Trans. Electron Devices, 58, No. 8, 2777 (2011).

    Article  ADS  Google Scholar 

  18. M.K. Hornstein, V. S. Bajaj, R. G. Griffin, et al., IEEE Trans. Electron Devices, 52, No. 5, 798 (2005).

    Article  ADS  Google Scholar 

  19. M.Yu.Glyavin, G.G. Denisov, V. E. Zapevalov, et al., Radiophys. Quantum Electron., 58, No. 9, 649 (2016).

  20. N.P.Venediktov, V.V.Dubrov, V. E. Zapevalov, et al., Radiophys. Quantum Electron., 53, No. 4, 237 (2010).

  21. A. Sh. Fix, V. A. Flyagin, A. L. Goldenberg, et al., Int. J. Electron., 57, No. 6, 821 (1984).

    Article  Google Scholar 

  22. K. Sakamoto, M.Tsuneoka, A.Kasugai, et al., Phys. Rev. Lett., 73, No. 26, 3532 (1994).

    Article  ADS  Google Scholar 

  23. M.Yu.Glyavin, A.N.Kuftin, N. P.Venediktov, and V. E. Zapevalov, Int. J. Infrared Millimeter Waves, 18, No. 11, 2129 (1997).

  24. A. V.Chirkov, G. G. Denisov, A.N.Kuftin, et al., Tech. Phys. Lett., 33, No. 4, 350 (2007).

    Article  ADS  Google Scholar 

  25. A. V.Chirkov, G. G. Denisov, A.N.Kuftin, Appl. Phys. Lett., 106, No. 26, 263501 (2015).

    Article  ADS  Google Scholar 

  26. V. V. Parshin, Int. J. Infrared Millimeter Waves, 15, No. 2, 339 (1994).

    Article  ADS  Google Scholar 

  27. S. N. Vlasov and E. V.Koposova, Radiophys. Quantum Electron., 52, No. 10, 782 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Zuev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 6, pp. 494–504, June 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavolsky, N.A., Zapevalov, V.E., Zuev, A.S. et al. Analysis of the Methods of Discrete and Smooth Frequency Tuning in Gyrotrons for Spectroscopy, on the Example of a Generator Operated in the 0.20–0.27 THz Frequency Range. Radiophys Quantum El 61, 436–444 (2018). https://doi.org/10.1007/s11141-018-9905-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-018-9905-4

Navigation