Skip to main content
Log in

Two-Frequency Undulators for Generation of X-Ray Radiation in Free-Electron Lasers

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present a theoretical study and a computer simulation of characteristics of the undulator radiation in single-pass free-electron lasers (FELs). Using a phenomenological model describing the dynamics of the radiated power in FELs with allowance for the basic loss, we study generation of harmonics in the X-ray range in a FEL with a two-frequency undulator. We study the possibility to achieve a hundredfold increase in the radiation intensity of the nth harmonic in a FEL, in which the electron-phase shift by /n with respect to photons occurs between undulator sections, where k = 2, 4, . . . . The advantages of using a two-frequency undulator in a single-pass FEL and the possibility of generating the high-power X-ray radiation by the FEL at the harmonic wavelengths 2.3–3.3 nm in the linear regime are demonstrated. The FEL is compared with the two-frequency undulator and the conventional plane undulator. Additionally, generation of radiation having a power of tens of megawatts is studied at the wavelength λ ≈ 3.27 nm in a multistage FEL with a length of 40 m, an off-the-shelf excimer ultraviolet seed laser, which operates at a wavelength of 157 nm, and an electron beam having an energy of about 0.6 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. G. Bagrov, G. S. Bisnovatiy-Kogan, and V. A. Bordovitsyn, Theory of Radiation of Relativistic Particles [in Russian], Fizmatlit, Moscow (2002).

    Google Scholar 

  2. V. G. Bagrov, I. M. Ternov, and B. V. Kholomai, Radiation of Relativistic Electrons in the Longitudinal Periodic Electric Field of a Crystal [in Russian], Tomsk Research Center of the Siberian Branch of the USSR Academy of Sciences, Tomsk (1987).

    Google Scholar 

  3. G. Margaritondo, Synchrotron Radiation: Basics, Methods and Applications, Springer, Berlin (2015), p. 29.

    Google Scholar 

  4. V. L. Ginzburg, Izv. Akad. Nauk SSSR., Fiz., 11, 1651 (1947).

    Google Scholar 

  5. H. Motz, W. Thon, and R. N. J. Whitehurst, Appl. Phys., 24, 826 (1953).

    Article  Google Scholar 

  6. L. A. Artsimovich and I. Ya. Pomeranchuk, Zh. Éksp. Teor. Fiz., 16, 379 (1946).

    Google Scholar 

  7. I. M. Ternov, V. V. Mikhailin, and V. R. Khalilov, Synchrotron Radiation and its Application [in Russian], Moscow State Univ., Moscow (1980).

    Google Scholar 

  8. D. F. Alferov, Yu. A. Bashmakov, and E.G. Bessonov, Zh. Tekh. Fiz., 43, No. 10, 2126 (1973).

    Google Scholar 

  9. D. F. Alferov, Yu. A. Bashmakov, and P. A. Cherenkov, Sov. Physics—Uspekhi, 32, No. 3, 200 (1989).

    Article  ADS  Google Scholar 

  10. V. I. Alexeev and E.G. Bessonov, Nucl. Instrum. Meth. A, 30, 140 (1991).

    ADS  Google Scholar 

  11. E. G. Bessonov, Quantum Electron., 16, No. 8, 1056 (1986).

    ADS  Google Scholar 

  12. E. G. Bessonov, Nucl. Instrum. Meth. A, 282, 405 (1989).

    Article  ADS  Google Scholar 

  13. E. G. Bessonov, Nucl Instrum. Meth. A, 282, 442 (1989).

    Article  ADS  Google Scholar 

  14. B. W. J. McNeil and N. R. Thompson, Nature Photon., 4, 814 (2010).

    Article  ADS  Google Scholar 

  15. C. Pellegrini, A. Marinelli, and S. Reiche, Rev. Mod. Phys., 88, 015006 (2016).

    Article  ADS  Google Scholar 

  16. Z. Huang and K. J. Kim, Phys. Rev. ST Accel. Beams, 10, 034801 (2007).

    Article  ADS  Google Scholar 

  17. E. L. Saldin, E.A. Schneidmiller, and M. V. Yurkov, The Physics of Free Electron Lasers, Springer, Berlin (2000).

    Book  Google Scholar 

  18. R. Bonifacio, C. Pellegrini, and L. Narducci, Opt. Commun., 50, 373 (1984).

    Article  ADS  Google Scholar 

  19. P. Schmüser, M. Dohlus, J. Rossbach, and C. Behrens, Free-Electron Lasers in the Ultraviolet and X-Ray Regime, Springer, Cham (2014).

    Book  Google Scholar 

  20. C. Pellegrini, Phys. Scr., 91, 014004 (2016).

    Article  Google Scholar 

  21. J. M. J. Madey, J. Appl. Phys., 42, 1906 (1971).

    Article  ADS  Google Scholar 

  22. L. R. Elias, W. M. Fairbank, J. M. Madey, et al., Phys. Rev. Lett., 36, No. 13, 717 (1976).

    Article  ADS  Google Scholar 

  23. D. A. Deacon, L. R. Elias, J. M. Madey, et al., Phys. Rev. Lett., 38, No. 16, 892 (1977).

    Article  ADS  Google Scholar 

  24. N. M. Kroll and W. A. McMullin, Phys. Rev. A, 17, No. 1, 300 (1978).

    Article  ADS  Google Scholar 

  25. W. B. Colson, Nucl. Instrum. Meth. A, 393, 82 (1997).

    Article  ADS  Google Scholar 

  26. P. Sprangle and R. A. Smith, Phys. Rev. A, 21, No. 1, 293 (1980).

    Article  ADS  Google Scholar 

  27. K. J. Kim and M. Xie, Nucl. Instrum. Meth. A, 331, 359 (1993).

    Article  ADS  Google Scholar 

  28. L.-H. Yu, M. Babzien, I. Ben-Zvi, et al., Science, 289, 932 (2000).

    Article  ADS  Google Scholar 

  29. L.-H. Yu, Phys. Rev. A, 44, 5178 (1991).

    Article  ADS  Google Scholar 

  30. E. L. Saldin, E.A. Schneidmiller, and M. V. Yurkov, Opt. Commun., 202, 169 (2002).

    Article  ADS  Google Scholar 

  31. T. Shaftan and L.-H. Yu, Phys. Rev. E, 71, 046501 (2005).

    Article  ADS  Google Scholar 

  32. H.-T. Li and Q.-K. Jia, Chin. Phys. C, 37, No. 2, 028102 (2013).

    Article  ADS  Google Scholar 

  33. H.-X. Deng and Z.-M. Dai, Chin. Phys. C, 37, No. 10, 102001 (2013).

    Article  ADS  Google Scholar 

  34. H.-X. Deng and Z.-M. Dai, Chin. Phys. C, 34, No. 8, 1140 (2010).

    Article  ADS  Google Scholar 

  35. L. Zeng, W. Qin, and G. Zhao, Chin. Phys. C, 40, No. 9. 098102 (2016).

    Article  ADS  Google Scholar 

  36. K. B. Zhukovsky, Moscow Univ. Phys. Bull., 70, No. 4, 232 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  37. K. V. Zhukovsky, J. Electromagn. Waves Appl., 29, No. 1, 132 (2015).

    Article  Google Scholar 

  38. K. Zhukovsky, J. Electromagn. Waves Appl., 28, No. 15, 1869 (2014).

    Article  Google Scholar 

  39. K. Zhukovsky, Laser Part. Beams, 34, 447 (2016).

    Article  ADS  Google Scholar 

  40. G. Mishra, M. Gehlot, and J.-K. Hussain, Nucl. Instrum. A, 603, 495 (2009).

    Article  ADS  Google Scholar 

  41. G. Dattoli, V. V. Mikhailin, P. L. Ottaviani, and K. Zhukovsky, J. Appl. Phys., 100, 084507 (2006).

    Article  ADS  Google Scholar 

  42. G. Dattoli, N. S. Mirian, E. Di Palma, and V. Petrillo, Phys. Rev. ST Accel. Beams, 17, 050702 (2014).

    Google Scholar 

  43. A. V. Savilov and G. S. Nusinovich, Phys. Plasmas, 14, 053113 (2007).

    Article  ADS  Google Scholar 

  44. G. S. Nusinovich and O. Dumbrajs, Phys. Plasmas, 2, 568 (1995).

    Article  ADS  Google Scholar 

  45. A. V. Savilov and G. S. Nusinovich, Phys. Plasmas, 5, 013112 (2008).

    Article  ADS  Google Scholar 

  46. T. Shintake, Nature Photon., 2, 555 (2008).

    Article  Google Scholar 

  47. L.-H. Yu, L. Di Mauro, A. Doyuran, et al., Phys. Rev. Lett., 91, 074801 (2003).

    Article  ADS  Google Scholar 

  48. B. McNeil, Nature Photon., 2, 522 (2008).

    Article  ADS  Google Scholar 

  49. K. Tiedtke, A. Azima, N. von Bargen, et al., New J. Phys., 11, 023029 (2009).

    Article  ADS  Google Scholar 

  50. E. A. Seddon, J. A. Clarke, D. J. Dunning, et al., Rep. Prog. Phys., 80, 115901 (2017).

    Article  ADS  Google Scholar 

  51. E. L. Saldin, E. A. Schneidmiller, M. V. Yurkov, et al., New J. Phys., 12, 035010 (2010).

    Article  ADS  Google Scholar 

  52. M. Quattromini, M. Artioli, E. Di Palma, et al., Phys. Rev. ST Accel. Beams, 15, 080704 (2012).

    Article  ADS  Google Scholar 

  53. R. P. Walker, Nucl. Instrum. Meth. A, 335, 328 (1993).

    Article  ADS  Google Scholar 

  54. N. A. Vinokurov and E. B. Levichev, Physics—Uspekhi, 58, No. 9, 850 (2015).

    Article  ADS  Google Scholar 

  55. H. Onuki and P. Elleaume, Undulators, Wigglers and their Applications, Taylor & Francis, New York (2003).

    Book  Google Scholar 

  56. G. Dattoli, J. Appl. Phys., 84, No. 5, 2393 (1998).

    Article  ADS  Google Scholar 

  57. G. Dattoli and P. L. Ottaviani, Opt. Commun., 204, No. 1, 283 (2002).

    Article  ADS  Google Scholar 

  58. G. Dattoli, P. L. Ottaviani, and A. Renieri, Laser Part. Beams, 23, 303 (2005).

    Article  ADS  Google Scholar 

  59. G. Dattoli, P. L. Ottaviani and S. Pagnutti, J. Appl. Phys., 97, 113102 (2005).

    Article  ADS  Google Scholar 

  60. G. Dattoli, L. Giannessi, P. L. Ottaviani, and C. Ronsivalle, J. Appl. Phys., 95, 3206 (2004).

    Article  ADS  Google Scholar 

  61. K. Zhukovsky, Nucl. Instrum. Meth. Phys. Res. B, 369, 9 (2016).

    Article  ADS  Google Scholar 

  62. K. Zhukovsky, Opt. Commun., 353, 35 (2015).

    Article  ADS  Google Scholar 

  63. K. Zhukovsky and I. Potapov, Laser Part. Beams, 35, 326 (2017).

    Article  ADS  Google Scholar 

  64. L. Giannessi, D. Alesini, P. Antici, et al., Phys. Rev. ST Accel. Beams, 14, 060712 (2011).

    Article  ADS  Google Scholar 

  65. F. de Martini, in: Laser Handbook, Vol. 6, North-Holland, Amsterdam (1990), p. 195.

  66. R. Bonifacio, L. de Salvo, and P. Pierini, Nucl. Instrum. Meth. Phys. Res. A, 293, 627 (1990).

    Article  ADS  Google Scholar 

  67. Z. Huang and K.-J. Kim, Phys. Rev. E, 62, 7295 (2000).

    Article  ADS  Google Scholar 

  68. K. Zhukovsky, Europhys. Lett., 119, 34002 (2017).

    Article  ADS  Google Scholar 

  69. K. V. Zhukovsky, Russ. Phys. J., 60, No. 9, 1630 (2018).

    Article  Google Scholar 

  70. K. Zhukovsky, Opt. Commun., 418, 57 (2018).

    Article  ADS  Google Scholar 

  71. K. V. Zhukovsky, Russ. Phys. J., 61, No. 2, 278 (2018).

    Article  Google Scholar 

  72. K. Zhukovsky, J. Phys. D: Appl. Phys., 50, 505601 (2017).

    Article  Google Scholar 

  73. K. Zhukovsky, J. Appl. Phys., 122, No. 23, 233103 (2017).

    Article  ADS  Google Scholar 

  74. B. W. J. McNeil, G. R. M. Robb, M. W. Poole, and N. R. Thompson, Phys. Rev. Lett., 96, 084801 (2006).

    Article  ADS  Google Scholar 

  75. E. A. Schneidmiller and M. V. Yurkov, Phys. Rev. ST Accel. Beams, 15, 080702 (2012).

    Article  ADS  Google Scholar 

  76. S. C. Bajt and M. A. Wall, Patent Application No. EP 1198725 A1 USA, PCT No. PCT/US2000/013549.

  77. K. V. Zhukovsky, Moscow Univ. Phys. Bull., 72, No. 2, 128 (2017).

    Article  ADS  Google Scholar 

  78. V. N. Korchuganov, N. Yu. Svechnikov, N. V. Smolyakov, and S. I. Tomin, J. Surface Investig. X-Ray Synch. Neutron Tech., 4, No. 6, 891 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Zhukovsky.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 3, pp. 244–260, March 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukovsky, K.V., Potapov, I.A. & Kalitenko, A.M. Two-Frequency Undulators for Generation of X-Ray Radiation in Free-Electron Lasers. Radiophys Quantum El 61, 216–231 (2018). https://doi.org/10.1007/s11141-018-9883-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-018-9883-6

Navigation